Projectile Motion Problem: Kicking a soccer ball over a fence

AI Thread Summary
The discussion revolves around solving a projectile motion problem involving a soccer ball kicked towards a fence. The initial velocity of the ball is given as 19 m/s at a 30-degree angle, and calculations show that the ball will not hit the fence, reaching a height of 4.2 meters above the ground, which is 1.7 meters above the 2.5-meter fence. Participants point out errors in the use of components and time calculations, emphasizing the need for correct application of equations for both horizontal and vertical motion. The final calculations indicate that the ball's vertical height at the time it reaches the fence is 3.2 meters, which is still above the fence height. Overall, the consensus is that the ball clears the fence safely.
salqmander
Messages
18
Reaction score
0
Homework Statement
A soccer player is practicing their kick on a field. Initially at rest, an 0.8 kilogram ball is kicked directly toward a fence from a distance 25 meters away, as shown above. The ball's velocity as it leaves the kicker's foot is 19 m/s at an angle of 30 degrees above the horizontal. The top of the fence field is 2.5 meters high. The kicker's foot is in contact with the ball for 0.05 seconds. While in flight, the ball doesn't hit any other object, and air resistance is negligible.

Determine whether the ball will hit the fence. If it will, how high up the fence will it hit? If not, how far above the fence will it reach?
Relevant Equations
d = vt + .5at^2
initial velocity y component is (cos30) * 20.

t = 25m / ((cos30) * 20)m/s = 1.45 seconds

d = vt + .5at^2

v= 20sin30

v= 10 , d= 10(1.45s) + .5(-9.8m/s^s)(1.45s)^2

d=4.2m

4.2-2.5 = +1.7m, so the ball will not hit the fence

I need confirmation please
 
Last edited:
Physics news on Phys.org
Looks good, except you use ##20 m/s## instead of ##19 m/s## given in the question?
 
oh I didn't catch that! i'll fix it, thank you
 
salqmander said:
initial velocity y component is (cos30) * 20.
Have another go (and I'm not referring to whether it's 19 or 20).
 
should I use the equation
xf = xi + (vx)i delta t
for time and then
yf = yi + vyi delta t- 1/2g t ^2
 
haruspex said:
Have another go (and I'm not referring to whether it's 19 or 20).
is this right?

xf = xi + (vx)i delta t, xi=0

t = xf / vxi

t = 25m / 19m/s, t = 1.3 seconds
vyi = vi sin theta, vyi = 9.5m/s

yf = yi + vyi delta t- 1/2g t ^2

= 0m + 9.5m/s(1.5) - 0.5(9.8m/s^2)(1.5)^2

yf = 3.2m

3.2-2.5 = +0.7m
 
salqmander said:
is this right?

xf = xi + (vx)i delta t, xi=0

t = xf / vxi

t = 25m / 19m/s, t = 1.3 seconds
vyi = vi sin theta, vyi = 9.5m/s

yf = yi + vyi delta t- 1/2g t ^2

= 0m + 9.5m/s(1.5) - 0.5(9.8m/s^2)(1.5)^2

yf = 3.2m

3.2-2.5 = +0.7m
In post #4 I quoted one of your equations. Why am I finding fault with it?
 
oh its sin not cos
 
salqmander said:
t = xf / vxi

t = 25m / 19m/s, t = 1.3 seconds
Also, do you see a similar problem above?
 
  • #10
kuruman said:
Also, do you see a similar problem above?
yes, i solved for horizontal position not vertical position
 
  • #11
salqmander said:
yes, i solved for horizontal position not vertical position
That's not it. You solved for the time of flight. Do you see what's wrong with it?
 
  • #12
salqmander said:
Homework Statement: A soccer player is practicing their kick on a field. Initially at rest, an 0.8 kilogram ball is kicked directly toward a fence from a distance 25 meters away, as shown above. The ball's velocity as it leaves the kicker's foot is 19 m/s at an angle of 30 degrees above the horizontal. The top of the fence field is 2.5 meters high. The kicker's foot is in contact with the ball for 0.05 seconds. While in flight, the ball doesn't hit any other object, and air resistance is negligible.

Determine whether the ball will hit the fence. If it will, how high up the fence will it hit? If not, how far above the fence will it reach?
Relevant Equations: d = vt + .5at^2

initial velocity y component is (cos30) * 20.

t = 25m / ((cos30) * 20)m/s = 1.45 seconds

d = vt + .5at^2

v= 20sin30

v= 10 , d= 10(1.45s) + .5(-9.8m/s^s)(1.45s)^2

d=4.2m

4.2-2.5 = +1.7m, so the ball will not hit the fence

I need confirmation please
This solution was correct, apart from the typo(?) of y component, rather than x component. It was subsequently used as the x-component. And, the use of the wrong initial speed. Subsequent attempts seem to have deteriorated somewhat!
 
Back
Top