Projectile Motion Problem (Object thrown from the top of a cliff)

Click For Summary
An object thrown from a 230 m cliff with a horizontal velocity of 32 m/s and a vertical velocity of 24 m/s experiences a vertical acceleration of -1.6 m/s² on the moon. The calculations indicate that the time of flight is derived from the quadratic equation, yielding a potential flight time of 10 seconds for the downward motion. However, the teacher suggests that the total flight time is 40 seconds, implying that the object first ascends for 20 seconds before descending. Clarification is needed on whether the object is thrown upward or downward, as this affects the total flight duration. Understanding the initial direction of the throw is crucial to resolving the discrepancy in flight time.
Parkkk41
Messages
2
Reaction score
0
1. If an object is thrown with a horizontal velocity of 32 m/s and a vertical velocity of 24 m/s from the top of a cliff that is 230 m in height (on the moon where the acceleration is found to be 1.6 m/s^2), how long will the object be in flight?



2. Δd = v1Δt+1/2aΔt^2, Δd = v2Δt-1/2aΔt^2, x = (-b±√(b^2-4ac))/2a



3. Given information: a = -1.6 m/s^2, Δd = 320m, Vv = 24 m/s, Δt = ?

Δd = v1Δt+1/2aΔt^2
320 = 24Δt+0.5(-1.6)(Δt^2)
320 = 24Δt+0.8Δt^2
0 = 0.8Δt^2+24Δt-320
----> Solve for zeros using quadratic formula

x = (-b±√(b^2-4ac))/2a
= -24±√(24^2-4(0.8)(-320))/2(0.8)
=(-24+40)/1.6 = (-24-40)/1.6
=10s =-40s
So, -40 would not be used and 10 is used... But the thing is, my teacher says the answer is 20? Meaning the half flight is 20s so multiply it by 2 and it's in flight for a total of 40s... I do not understand how 40s is the answer. Can someone please tell me how to do this right or verify the real answer? Any help is appreciated, thank you :)
 
Last edited by a moderator:
Physics news on Phys.org
Parkkk41 said:
1. If an object is thrown with a horizontal velocity of 32 m/s and a vertical velocity of 24 m/s from the top of a cliff that is 230 m in height (on the moon where the acceleration is found to be 1.6 m/s^2), how long will the object be in flight?

2. Δd = v1Δt+1/2aΔt^2, Δd = v2Δt-1/2aΔt^2, x = (-b±√(b^2-4ac))/2a

3. Given information: a = -1.6 m/s^2, Δd = 320m, Vv = 24 m/s, Δt = ?

Δd = v1Δt+1/2aΔt^2
320 = 24Δt+0.5(-1.6)(Δt^2)
320 = 24Δt+0.8Δt^2
0 = 0.8Δt^2+24Δt-320
----> Solve for zeros using quadratic formula

x = (-b±√(b^2-4ac))/2a
= -24±√(24^2-4(0.8)(-320))/2(0.8)
=(-24+40)/1.6 = (-24-40)/1.6
=10s =-40s
So, -40 would not be used and 10 is used... But the thing is, my teacher says the answer is 20? Meaning the half flight is 20s so multiply it by 2 and it's in flight for a total of 40s... I do not understand how 40s is the answer. Can someone please tell me how to do this right or verify the real answer? Any help is appreciated, thank you :)
Hello Parkkk41. Welcome to PF !

(Check the rules of this Forum regarding the use of bold face type.)

The initial value for the vertical component of velocity is 24m/s. If the vertical component of acceleration is -1.6 m/s2, then it takes 15 sec. for the projectile to reach it's max altitude, and another 15 sec. to return to launch elevation.

How much longer does it take to fall an additional 230 meters --- or is it 320 meters?
 
Last edited by a moderator:
1. If an object is thrown with a horizontal velocity of 32 m/s and a vertical velocity of 24 m/s from the top of a cliff that is 230 m in height (on the moon where the acceleration is found to be 1.6 m/s^2), how long will the object be in flight?
------------------------
If the ball is thrown down you are correct.
If the ball is thrown up your teacher is correct.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
3K
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
13
Views
4K
  • · Replies 22 ·
Replies
22
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K