app_oos
- 5
- 0
matt grime said:Well it would go something like.
0Cr is an integer, for all r (1 if r=0, and zero otherwise). Suppose that for a given n, all the nCr are integers, then since {n+1}Cr = nCr + nC{r-1} it follows that the {n+1}Cr are integers for all r. Hence, by induction, nCr is an integer for all n and all r.
Ok, so he says that {n+1}Cr = nCr + nC{r-1}, which I understand. What I don't get is how it "follows" that {n+1}Cr is an integer as well, since you would need to show that both nCr and nC{r-1} are integers to use the closure property. We know the first one by assumption, but how do you know nC{r-1} is an integer, which wasn't explained in post 13?