MHB Proof of Gρ(x)=ρGxρ−1 in Symmetric Groups

  • Thread starter Thread starter mathjam0990
  • Start date Start date
  • Tags Tags
    Proof Type
mathjam0990
Messages
28
Reaction score
0
Let G be a subgroup of Sym(X) and ρ ∈ G. Prove that Gρ(x) = ρGxρ−1, where ρGxρ−1 = {ρgρ−1|g ∈ Gx}

What I Know: I need to somehow prove the left is contained in the right and the right is contained in the left.

What I Have Done: Well based on the definition of a stabilizer Gx I assumed that Gρ(x) = {g'(p(x))=p(x) | g' w/in G} Sorry, I'm not sure if that is correct or not.

Then for (Left contained in right): For all g' w/in G, g'(p(x)=p(x) ---> (g'p)(x)=p(x) ---> pg'p-1p-1p(x)=p(p(x))p-1p-1 (multiplied both sides by pp-1p-1)
--->pg'p-1(x)=x (by associativity for a group) and that is contained in pgp-1 which equals ρGxp−1

Haven't attempted the "right contained in the left" because I'm not even sure if I even did the initial part correctly, I feel like I messed up. Any help please??

Thank you!
 
Physics news on Phys.org
Hi mathjam0990,

Based on what you've written for $G_{\rho(x)}$, I take it that you haven't yet grasped the definition of the stabilizer. If $G$ is a group acting (on the left) on a set $S$, then for each $s\in S$, the stabilizer $G_s$ of $s$ is defined as the set of all elements of $G$ which fix $s$, i.e., $\{g\in G : gs = s\}$. In your prompt, you should have stated that $x\in X$.

Now if $a\in G_{\rho(x)}$, then $a\in G$ and $a(\rho(x)) = \rho(x)$. Thus $\rho^{-1}a\rho(x) = \rho^{-1}\rho(x) = x$; since $G$ is a subgroup of $\operatorname{Sym}(X)$ and both $a,\rho\in G$, then $\rho^{-1}a\rho\in G$. Therefore $\rho^{-1}a\rho\in G_x$, say $\rho^{-1}a\rho = b$ for some $b\in G_x$. Then $a = \rho b\rho^{-1}\in \rho G_x\rho^{-1}$.

Conversely, if $a\in \rho G_x \rho^{-1}$, then there is a $g\in G_x$ such that $a = \rho g \rho^{-1}$. Since $G$ is a subgroup of $\operatorname{Sym}(X)$ and $\rho, g\in G$, then $\rho g \rho^{-1}\in G$, i.e., $a\in G$. As $g(x) = x$, $a(\rho(x)) = \rho(g(x)) = \rho(x)$. Consequently $a\in G_{\rho(x)}$.
 
Some things to keep in mind:

for any group $G$, and any element $g \in G$, the map $x \mapsto g^{-1}xg$ is an automorphism of $G$ (an isomorphism $G \to G$), called the inner automorphism induced by $g$.

So, if $H$ is any subgroup of $G$, then $gHg^{-1}$ is *also* a subgroup of $G$ (isomorphic to $H$).

In particular, if $H$ is the stabilizer of some element in a set $S$ that $G$ acts on, say $H = G_a$, for some $a \in S$, it seems that $gG_ag^{-1}$ must also be a stabilizer of "something" (some perhaps different element of $S$).

But what? Let us see if we can discover this. Let $h \in G_a$, so $h(a) = a$. We will try to find out which $s \in S$ (if any) that $ghg^{-1}$ stabilizes.

From $ghg^{-1}(s) = s$ we have (letting $g^{-1}$ act on both sides):

$hg^{-1}(s) = g^{-1}(s)$, that is: $h(g^{-1}(s)) = g^{-1}(s)$. So $g^{-1}(s)$ must be an element of $S$ that $H = G_a$ stabilizes. We only know of one such element, $a$ (this is the only bit that requires a little cleverness).

So if we set $g^{-1}(s) = a$, we know this will work. Now we can solve for $s$, by having $g$ act on both sides:

$g(g^{-1}(s)) = g(a)$
$(gg^{-1})(s) = g(a)$
$e(s) = g(a)$
$s = g(a)$.

Clearly, then, $gG_ag^{-1}$ stablizes $g(a)$. This shows that $gG_ag^{-1} \subseteq G_{g(a)}$.

I'll repeat this finding, for emphasis:

CONJUAGTES $ghg^{-1}$ of stabilizers $h$ of $a\in S$, stabilize the IMAGE $g(a)$.

To show $G_{g(a)} \subseteq gG_ag^{-1}$, we just work backwards:

Suppose $x \in G$ is such that $x(g(a)) = g(a)$.

Then $xg(a) = g(a)$, so $g^{-1}xg(a) = g^{-1}g(a) = a$. That is, $g^{-1}xg$ stabilizes $a$.

From $g^{-1}xg \in G_a$, we have $x = exe = (gg^{-1})x(gg^{-1}) = g(g^{-1}xg)g^{-1} \in gG_ag^{-1}$, and that's the end of this short television episode.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top