Proof of Induction Principle starting from N, not from 1

Click For Summary
SUMMARY

The discussion centers on the proof of the Induction Principle starting from an integer N rather than the traditional starting point of 1. The proof establishes that if P(N) holds and P(n) implies P(n+1), then P(n) is true for all n greater than or equal to N. The key transformation involves defining Q(n) as P(n+N-1), allowing the proof to transition from P(n+N-1) to P(n) for all n greater than or equal to N. The lecturer's omission of certain steps prompted requests for clarification, particularly regarding the transition from Q(n) to P(n).

PREREQUISITES
  • Understanding of mathematical induction principles
  • Familiarity with logical implications in proofs
  • Knowledge of the Well-Ordering principle
  • Basic algebraic manipulation of propositions
NEXT STEPS
  • Study the Well-Ordering principle in detail
  • Learn about the implications of shifting indices in mathematical proofs
  • Explore examples of induction proofs starting from different integers
  • Review the concept of dummy variables in mathematical expressions
USEFUL FOR

Mathematicians, educators, and students studying mathematical proofs, particularly those interested in induction and logical reasoning techniques.

Hall
Messages
351
Reaction score
87
TL;DR
Induction Principle.
In this video lecture (though I have linked the video at "current time", in case it doesn't; work please see the video at 19:16), the lecturer just works out (he is not explaining anything) the proof of Induction Principle starting from ##N##. Let me give out here what he did:

Statement: Let N be an integer, ##P(n)## denotes the Property P that a natural number ##n \geq N## may or may not follow. If
1. P(N) holds
2. P(n) implies P(n+1)
then P(n) is true for all ##n \gt N##.

Proof: ##Q(n) = P(n+N-1)##
1. ## Q(1) = P(N)##, since P(N) holds therefore, Q(1) is true.
2. If ## Q(n) = P(n+N-1)## holds then ##Q(n+1) = P(n+N)## holds and therefore P(n) holds for all ##n\geq N##.


I couldn't understand anything of step 2 of the proof. Can you please give some hint?
 
Physics news on Phys.org
Well, I think I got it.

We have to prove that ##P(n)## holds for all ##n \geq N## if the following two conditions are given:
1. P(N) holds
2. P(n) implies P(n+1), for all ##n \geq N##

Proof: Assume another proposition, ## Q (n) = P(n+N-1)##.
Since, ##Q(1) = P(N)## and ##P(N)## is true, therefore, Q(1) is true.

Assume that, ##Q(n)## is true, that is ##P(n+N-1)## is true, then ##Q(n+1) = P(n+N)## is true because it is of the form ##P(r) \implies P(r+1)##, r= n+N-1, which is validated by property 2 in the statement. Hence, ##Q(n) \implies Q(n+1)##, therefore ##Q(n)## is true for all n.

Since, ## P(n+N-1)## is true for all n, we get
  • for n=1, we have P(N) is true
  • for n=2, we have P(N+1) is true
  • for n=3, we have P(N+2) is true
Therefore, P(n) is true for all ##n\geq N##.

Hence, proved.

The lecturer left out so many of things in proof, maybe for some it was obvious.
 
The key point is that induction from ##N## reduces to induction from ##1## simply by rephrasing the propositions.
 
  • Like
Likes   Reactions: Delta2 and FactChecker
One proposition's (P's) N is another proposition's (Q's) 1. It is just a matter of where you start counting and adjusting for that.
 
@PeroK @FactChecker Yes, reducing the N induction principle to the normal induction principle was the trick. But the last step, moving from ##P(n+N-1)## to ##P(n) ~ \forall n\geq N##, was also not very obvious.
 
In most accounts I'm familiar with, the Well-Ordering principle is used, so that the set of all P(n) that are true has a least element. Maybe that would shed light on the proof/argument.
 
  • Like
Likes   Reactions: Hall
Hall said:
But the last step, moving from ##P(n+N-1)## to ##P(n) ~ \forall n\geq N##, was also not very obvious.
The task of shifting an index is one that you may run into occasionally. You can simplify your understanding of it by plugging in n=1 in the side that should start with 1 and see what you get: P(1+N-1)=P(N). And it goes up from there: P(2+N-1) = P(N+1). It really is simple once you get used to it.

PS. Using the same dummy index, n, on both sides may be a conceptual mistake. Use ##n \ge 1## on one side and ##m \ge N## on the other.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 48 ·
2
Replies
48
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K