Hello,(adsbygoogle = window.adsbygoogle || []).push({});

In class we're using the free course on complexe analysis by Ash & Novinger, legally downloadable online. I'm stuck on their proof of the open mapping theorem. More specifically:

http://www.math.uiuc.edu/~r-ash/CV/CV4.pdf (page 15)

proposition (d) is [tex]f(\Omega) \textrm{ is open}[/tex] and its proof is that it follows out of proposition (a) and (b), so I'll give you (a) and (b) in case you don't want to click the link:

[tex]\textrm{Let $f$ be a non-constant analytic function on an open connected set $\Omega$. Let $z_0 \in \Omega$ and $w_0 = f(z_0)$, }[/tex]

[tex]\textrm{and let $k = m(f-w_0,z_0)$ be the order of zero which $f-w_0$ has at $z_0$. }[/tex]

[tex]\textrm{(a) There exists $\epsilon>0$ such that $\overline D(z_0, \epsilon) \subset \Omega$ and such that neither $f-w_0$ nor $f'$ has a zero in $\overline D(z_0, \epsilon)\backslash {z_0}$}. [/tex]

[tex]\textrm{(b) Let $\gamma$ be the positively oriented boundary of $\overline D(z_0, \epsilon)$, let $W_0$ be the component of $\mathbb C \backslash (f\circ \gamma)^*$ that contains $w_0$, }[/tex]

[tex]\textrm{and let $\Omega_1 = D(z_0,\epsilon) \cap f^{-1}(W_0)$. Then $f$ is a $k$-to-one map of $\Omega_1 \backslash {z_0}$ onto $W_0 \backslash {w_0}$ }.[/tex]

Proving (a) and (b) is not a problem, but I don't see how (d) follows out of (a) & (b)... It would follow if I knew that W_0 were open, but do I know that?

Side-Q: why is W_0 introduced? It seems obvious that [tex]W_0 = f(D(z_0,\epsilon)),[/tex]due to a continuous function sending connected sets to connected sets and [tex]w_0 \in f(D(z_0,\epsilon))[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proof of Open Mapping Theorem? (Ash & Novinger)

**Physics Forums | Science Articles, Homework Help, Discussion**