Proof of Second Sentence:$m<n \leftrightarrow m'<n'$

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Proof
Click For Summary

Discussion Overview

The discussion revolves around proving the logical equivalence of the second sentence in a set of statements regarding natural numbers, specifically focusing on the relationship between the inequalities $m < n$ and $m' < n'$. The scope includes mathematical reasoning and exploration of implications within set theory.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Debate/contested

Main Points Raised

  • One participant attempts to prove that $m < n$ implies $m' < n'$ through a series of set relations and implications.
  • Another participant questions how to reject the case where $m = n$, suggesting that if $m = n$, then $m' = n'$ would contradict $m' < n'$.
  • A later reply reiterates the argument that if $m = n$, then $m' = n'$ makes $m' < n'$ impossible.
  • Participants explore the fourth proposition regarding $m \leq n'$ and its equivalence to $m \leq n \lor m = n'$ through various logical steps.
  • There is a concern about whether the case of $m = n$ needs to be addressed in the context of the proof.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the treatment of the case $m = n$ and whether it affects the validity of the implications being discussed. Multiple viewpoints on the proof approach and the implications of equality remain unresolved.

Contextual Notes

Limitations include the dependence on definitions of natural numbers and set membership, as well as unresolved steps in the logical reasoning presented by participants.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the following sentence:

For any natural numbers $m,n$ it holds:

  • $m \leq n \leftrightarrow m' \leq n'$
  • $m<n \leftrightarrow m'<n'$
  • $m<n' \leftrightarrow m \leq n$
  • $m \leq n' \leftrightarrow m \leq n \lor m=n'$

I tried to prove the second sentence like that:

$$m<n \rightarrow m \in n \rightarrow m \subset n \wedge \{m\} \subset n \rightarrow m \cup \{ m \} \subset n \rightarrow m \cup \{m \}=n \lor m \cup \{ m \} \in n$$

From the relation $m \cup \{m \} \in n$ we get that $m \cup \{ m \} \in n \cup \{ n \} \rightarrow m' \in n' \rightarrow m'<n'$.

$$m'<n' \rightarrow m' \in n' \rightarrow m \cup \{ m \} \in n \cup \{ n \} $$

$$m \in m \cup \{ m \} \rightarrow m \in n \cup \{ n \} \rightarrow m \subset n \cup \{ n \} \rightarrow m \subset n \lor m \subset \{ n \}$$

From the relation $m \subset n$ we conclude that $m \in n \lor m=n$.

How could we reject the case $m=n$ ? (Thinking)
 
Physics news on Phys.org
evinda said:
$$m'<n' \rightarrow m' \in n' \rightarrow m \cup \{ m \} \in n \cup \{ n \} $$

$$m \in m \cup \{ m \} \rightarrow m \in n \cup \{ n \} \rightarrow m \subset n \cup \{ n \} \rightarrow m \subset n \lor m \subset \{ n \}$$

From the relation $m \subset n$ we conclude that $m \in n \lor m=n$.

How could we reject the case $m=n$ ?
You could argue that if $m=n$, then $m'=n'$ and therefore $m'<n'$, i.e., $m'\in n'$, is impossible.
 
Evgeny.Makarov said:
You could argue that if $m=n$, then $m'=n'$ and therefore $m'<n'$, i.e., $m'\in n'$, is impossible.

I see! (Nod)

Could we show the fourth proposition ($m \leq n' \leftrightarrow m \leq n \lor m=n'$) like that? (Thinking)

$$m \leq n' \leftrightarrow m=n' \lor m \in n' \leftrightarrow m=n' \lor m \in n \cup \{ n \} \leftrightarrow m=n' \lor m \subset n \cup \{ n \} \\ \leftrightarrow m=n' \lor m \subset n \lor m \subset \{ n \} \leftrightarrow m=n' \lor m \leq n \lor m \subset \{ n \}$$

It holds that:

$$m \subset \{ n \} \rightarrow m=\{ n \} \lor m \in \{ n \} \rightarrow m=\{ n \} \lor m=n$$

But we know the following:

$$m \leq n \leftrightarrow m \in n \lor m=n$$

and:

$$\{ n \} \subset n$$

So, $m \subset \{ m \} \rightarrow m \leq n$.

Therefore,

$$m \leq n' \leftrightarrow m=n' \lor m \leq n.$$
 
evinda said:
Hello! (Wave)

I am looking at the following sentence:

For any natural numbers $m,n$ it holds:

  • $m \leq n \leftrightarrow m' \leq n'$

I tried to prove the second sentence like that:

$$m<n \rightarrow m \in n \rightarrow m \subset n \wedge \{m\} \subset n \rightarrow m \cup \{ m \} \subset n \rightarrow m \cup \{m \}=n \lor m \cup \{ m \} \in n$$

From the relation $m \cup \{m \} \in n$ we get that $m \cup \{ m \} \in n \cup \{ n \} \rightarrow m' \in n' \rightarrow m'<n'$.

We say that $m \leq n \leftrightarrow m \in n \lor m=n$ but then we only use the case when $m \in n$.. Do we also have to conclude something from $m=n$? :confused:
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K