MHB Proof of Second Sentence:$m<n \leftrightarrow m'<n'$

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Proof
Click For Summary
The discussion centers on proving the logical equivalences involving natural numbers, particularly focusing on the implications of the second sentence: $m<n \leftrightarrow m'<n'$. The user attempts to establish this relationship through various set operations and logical deductions, ultimately questioning how to handle the case when $m=n$. They argue that if $m=n$, then $m'$ must equal $n'$, which contradicts the assertion that $m'<n'$. Additionally, they explore the fourth proposition regarding the relationship between $m \leq n'$ and $m \leq n \lor m=n'$. The conversation highlights the complexities of proving these mathematical statements and the necessity of addressing edge cases in the proofs.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the following sentence:

For any natural numbers $m,n$ it holds:

  • $m \leq n \leftrightarrow m' \leq n'$
  • $m<n \leftrightarrow m'<n'$
  • $m<n' \leftrightarrow m \leq n$
  • $m \leq n' \leftrightarrow m \leq n \lor m=n'$

I tried to prove the second sentence like that:

$$m<n \rightarrow m \in n \rightarrow m \subset n \wedge \{m\} \subset n \rightarrow m \cup \{ m \} \subset n \rightarrow m \cup \{m \}=n \lor m \cup \{ m \} \in n$$

From the relation $m \cup \{m \} \in n$ we get that $m \cup \{ m \} \in n \cup \{ n \} \rightarrow m' \in n' \rightarrow m'<n'$.

$$m'<n' \rightarrow m' \in n' \rightarrow m \cup \{ m \} \in n \cup \{ n \} $$

$$m \in m \cup \{ m \} \rightarrow m \in n \cup \{ n \} \rightarrow m \subset n \cup \{ n \} \rightarrow m \subset n \lor m \subset \{ n \}$$

From the relation $m \subset n$ we conclude that $m \in n \lor m=n$.

How could we reject the case $m=n$ ? (Thinking)
 
Physics news on Phys.org
evinda said:
$$m'<n' \rightarrow m' \in n' \rightarrow m \cup \{ m \} \in n \cup \{ n \} $$

$$m \in m \cup \{ m \} \rightarrow m \in n \cup \{ n \} \rightarrow m \subset n \cup \{ n \} \rightarrow m \subset n \lor m \subset \{ n \}$$

From the relation $m \subset n$ we conclude that $m \in n \lor m=n$.

How could we reject the case $m=n$ ?
You could argue that if $m=n$, then $m'=n'$ and therefore $m'<n'$, i.e., $m'\in n'$, is impossible.
 
Evgeny.Makarov said:
You could argue that if $m=n$, then $m'=n'$ and therefore $m'<n'$, i.e., $m'\in n'$, is impossible.

I see! (Nod)

Could we show the fourth proposition ($m \leq n' \leftrightarrow m \leq n \lor m=n'$) like that? (Thinking)

$$m \leq n' \leftrightarrow m=n' \lor m \in n' \leftrightarrow m=n' \lor m \in n \cup \{ n \} \leftrightarrow m=n' \lor m \subset n \cup \{ n \} \\ \leftrightarrow m=n' \lor m \subset n \lor m \subset \{ n \} \leftrightarrow m=n' \lor m \leq n \lor m \subset \{ n \}$$

It holds that:

$$m \subset \{ n \} \rightarrow m=\{ n \} \lor m \in \{ n \} \rightarrow m=\{ n \} \lor m=n$$

But we know the following:

$$m \leq n \leftrightarrow m \in n \lor m=n$$

and:

$$\{ n \} \subset n$$

So, $m \subset \{ m \} \rightarrow m \leq n$.

Therefore,

$$m \leq n' \leftrightarrow m=n' \lor m \leq n.$$
 
evinda said:
Hello! (Wave)

I am looking at the following sentence:

For any natural numbers $m,n$ it holds:

  • $m \leq n \leftrightarrow m' \leq n'$

I tried to prove the second sentence like that:

$$m<n \rightarrow m \in n \rightarrow m \subset n \wedge \{m\} \subset n \rightarrow m \cup \{ m \} \subset n \rightarrow m \cup \{m \}=n \lor m \cup \{ m \} \in n$$

From the relation $m \cup \{m \} \in n$ we get that $m \cup \{ m \} \in n \cup \{ n \} \rightarrow m' \in n' \rightarrow m'<n'$.

We say that $m \leq n \leftrightarrow m \in n \lor m=n$ but then we only use the case when $m \in n$.. Do we also have to conclude something from $m=n$? :confused:
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...

Similar threads

Replies
3
Views
5K
Replies
6
Views
2K
Replies
30
Views
5K
Replies
5
Views
1K
Replies
3
Views
2K
Replies
8
Views
2K
Replies
2
Views
2K