tt2348
- 141
- 0
Homework Statement
Prove that the lim sup cos(n)=1
Homework Equations
given any α\in\mathbb{R}-\mathbb{Q} , \exists P_n,Q_n\in\mathbb{N}.\ni.\frac{P_n}{Q_n} \rightarrow {a} and by definition, \frac{1}{Q_n} \rightarrow 0
Also, cos^{2}(x)=\frac{1+cos(2x)}{2}
My attempt
I first consider lim\:sup\:cos^{2}(n)
We know that \exists P_n,Q_n\in\mathbb{N}.\ni.\frac{P_n}{Q_n} \rightarrow {\pi} which means \forall \epsilon>0 \: \exists{N} \: .\ni. \forall{n}>N, \: |\frac{P_n}{Q_n}-\pi|<\epsilon
pick N.\ni.\:\epsilon<\frac{1}{Q_{n}^2}
So it follows that |\frac{P_n}{Q_n}-\pi|<\frac{1}{Q_{n}^2}
and therefore |P_n-Q_n\pi|<\frac{1}{Q_n}, am I allowed to make assume by continuity that |cos^{2}(P_n)-cos^{2}(Q_n\pi)|=|cos^{2}(P_n)-1|<ε and since P_k = a_{n_{k}} where a_n=n?