Proofing Calculus 1: Prove (-1)*a=-a

  • Thread starter Thread starter SarRis
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around proving the equation (-1)*a = -a within the context of calculus and foundational mathematics. Participants are exploring the definitions and properties of real numbers, including operations and inverses.

Discussion Character

  • Conceptual clarification, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants are attempting to define what -a means and how it relates to the concept of the additive inverse. Questions arise about the axioms and definitions that can be applied to the proof, as well as the relevance of the distributive law.

Discussion Status

There is an ongoing exploration of definitions and properties related to the proof. Some participants have suggested specific approaches and highlighted the importance of proving steps methodically. Guidance has been offered regarding the use of axioms and the need for clarity in definitions.

Contextual Notes

Participants note that they have not yet covered certain laws, such as the distributive law, in their coursework, which may affect their approach to the proof. There is also a recognition of the homework guidelines that require a personal attempt at the problem.

SarRis
Messages
9
Reaction score
2
Homework Statement
Prove that (-1)*a=-a
Relevant Equations
/
Hello! So I just started calculus 1 at my university and I have a problem with proofs since I haven't done them ever before. It would be great if you could help me with this question and give me a few advice on how to approach proofs (books/your personal tips/whatever you remember).
Thank you!
 
Physics news on Phys.org
Welcome to PF.

What have you covered in class so far? Do you have some axioms that you can use for this proof? You must have been taught something that can be applied here, no?
 
  • Like
Likes   Reactions: SarRis
:welcome:

According to the homework guidelines you have to make a good attempt at this yourself.

For a proof like this you must rely on how things are defined precisely. In anything but a rigorous algebra course, it would be taken for granted that ##(-1)a = -a##. So, you are going to have to figure out what those two sides of the equation actually mean before you can show that they are equal.
 
  • Like
Likes   Reactions: SarRis
So before this problem, we had two lessons. Defining the set of real numbers (axiomatic aproach). We defined binary oprations +,-, *, : and binary relations <, >, <=, >=. Also commutativity, associativity, identity element, inverse element. (I hope I explained well, English is not my mother tongue)
Why I did not write out my attempt at this problem is because I am just starting with proofs and I actually don't know how to approach them at all.
Thank you for understanding.
 
SarRis said:
So before this problem, we had two lessons. Defining the set of real numbers (axiomatic aproach). We defined binary oprations +,-, *, : and binary relations <, >, <=, >=. Also commutativity, associativity, identity element, inverse element. (I hope I explained well, English is not my mother tongue)
Why I did not write out my attempt at this problem is because I am just starting with proofs and I actually don't know how to approach them at all.
Thank you for understanding.
What is ##-a##? How would you define/describe that? And don't say "negative ##a##"!
 
PeroK said:
What is ##-a##? How would you define/describe that? And don't say "negative ##a##"!
So based on what we did before. I would say that -a is the inverse element of a.
Maybe the approach is to prove that (-1)a is the inverse element of a.
 
  • Like
Likes   Reactions: PeroK
SarRis said:
So based on what we did before. I would say that -a is the inverse element of a.
Maybe the approach is to prove that (-1)a is the inverse element of a.
It's better to say the additive inverse of ##a##. As opposed to the multiplicative inverse. And, yes, that's the right approach. What happens if you calculate ##a + (-1)a##?
 
PeroK said:
It's better to say the additive inverse of ##a##. As opposed to the multiplicative inverse. And, yes, that's the right approach. What happens if you calculate ##a + (-1)a##?
You get the (additive?) identity/ neutral element. Zero 0.
 
SarRis said:
You get the (additive?) identity/ neutral element. Zero 0.
Yes, but that has to be proved step by step. Welcome to pure maths!

Hint: what law relates to both addition and multiplication?
 
  • Like
Likes   Reactions: SarRis
  • #10
Thank you!
The law that relates to both addition and multiplication is commutativity.
So is it, just by adding the (-1)a and a, and getting the neutral element 0. We prove that (-1)a is the inverse element of a? Like this.
(-1)a + a = a + (-1)a = 0
 
  • #11
SarRis said:
Thank you!
The law that relates to both addition and multiplication is commutativity.
So is it, just by adding the (-1)a and a, and getting the neutral element 0. We prove that (-1)a is the inverse element of a? Like this.
(-1)a + a = a + (-1)a = 0
Not quite. I meant the distributive law. I took four steps to show that ##(-1)a + a = 0##.

And, I used two results which I assume you have covered: that ##a.0 = 0## and the uniqueness of the additive inverse.
 
  • Like
Likes   Reactions: SarRis
  • #12
We did cover that a*0=0 and the uniqueness of the additive inverse.
Is it (-1)a + a = 0
a(-1 + 1) = 0
a*0=0
We actually didn't cover the distributive law before this. Although I know that a*(b+c)=a*b + a*c (from left and right both)
 
  • #13
No we did! Sorry! Oh now I see!
 
  • #14
Thank you very much! I had a small eureka moment :)
 
  • Like
Likes   Reactions: docnet
  • #15
SarRis said:
We did cover that a*0=0 and the uniqueness of the additive inverse.
Is it (-1)a + a = 0
a(-1 + 1) = 0
a*0=0
We actually didn't cover the distributive law before this. Although I know that a*(b+c)=a*b + a*c (from left and right both)
This is not quite right. You can't immediately equate ##(-1) + a## to ##0##. Instead, what I did was:
$$(-1).a + a = (-1).a + 1.a = (-1 + 1).a = 0.a = 0$$
From which we conclude that ##(-1).a = -a##. Note that you could prove this last step by adding ##-a## to both sides of the equation and using the associative law. That might be a good exercise.
 
  • Like
Likes   Reactions: docnet and SarRis
  • #16
Thank you once again!
 
  • #17
SarRis said:
Thank you!
The law that relates to both addition and multiplication is commutativity.
So is it, just by adding the (-1)a and a, and getting the neutral element 0. We prove that (-1)a is the inverse element of a? Like this.
(-1)a + a = a + (-1)a = 0
Consider the Distributive law of addition with respect to product.
 

Similar threads

Replies
18
Views
2K
  • · Replies 17 ·
Replies
17
Views
11K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K