askor
- 168
- 9
Is it true that ##\frac{|a|}{|b|} = |\frac{a}{b}|## and ##|a| < |b| = a^2 < b^2##?
askor said:##|a| < |b| = a^2 < b^2##?
etotheipi said:Do you mean ##|a| < |b| \iff a^2 < b^2##?
romsofia said:Define ##|x| = \sqrt{x^2}##. Can you use certain properties of the square root to show that ##\frac{|a|}{|b|} = |\frac{a}{b}|##?
$$\frac{|a|}{|b|} = \frac{\sqrt{a^2}}{\sqrt{b^2}} = \sqrt{\frac{a^2}{b^2}} = \sqrt{\left(\frac{a}{b}\right)^2} = \dots$$askor said:I don't understand. Please tell me the point.