MHB Properties of permutation of a set

Kiwi1
Messages
106
Reaction score
0
I am doing some self study of groups and can solve problem #3 but not Problem #4.

Problem 3.
Let A be a finite set, and B a subset of A. Let G be the subset of S_A consisting of all of the permutations f of A such that f(x) is in B for every x in B. Prove that G is a subgroup of S_A.

Problem 4.
Give an example to show that the conclusion of part 3 is not necessarily true if A is an infinite set.

Problem 3.
I can show that G is closed under composition and I know that inverses exist because f is a one-one permutation. So G is a sub group.

Problem 4.
First I can't see any implicit use of the fact that A is finite in my solution to part 3.

I believe that G has infinite members because for each member of G there are an infinite number of other members that permute the members of A-B in different ways.

If I let A be the positive rational no's and B =(0,1) then f(x)=x^n and x^(1/n) are in G. Seems OK.
 
Physics news on Phys.org
Kiwi said:
Problem 3.
Let A be a finite set, and B a subset of A. Let G be the subset of S_A consisting of all of the permutations f of A such that f(x) is in B for every x in B. Prove that G is a subgroup of S_A.

...

Problem 3.
I can show that G is closed under composition and I know that inverses exist because f is a one-one permutation.
You need to show not only that the inverse exists in $S_A$, but that it belongs to $G$.
 
Evgeny.Makarov said:
You need to show not only that the inverse exists in $S_A$, but that it belongs to $G$.

1. f is a bijection from A to A. So f inverse exists in A.
2. f is also injective from B to B because if it weren't then the image of B would have fewer elements than B (not certain if this is true if B has infinite elements).
3. f is also surjective from B to B because if it weren't then (being injective) the domain B would be larger than the image B (not certain if this is true if B has infinite elements).
4. So f is a bijective function from B to B. Hence it has an inverse in B.

So my argument relights upon counting the elements in B. Presumably this does not hold if A (and hence B) have an infinite number of elements.Q4. Let A be the integers and B the positive integers. One example of f is f = x^2. Now f^{-1} = x^{1/2} is not in G because sqrt(2) is not in G. So G is not closed under inverses when B is the positive integers.

Are my arguments sound?
 
Kiwi said:
2. f is also injective from B to B because if it weren't then the image of B would have fewer elements than B (not certain if this is true if B has infinite elements).
Injectivity is always preserved when we take a restriction of a function.

Kiwi said:
3. f is also surjective from B to B because if it weren't then (being injective) the domain B would be larger than the image B (not certain if this is true if B has infinite elements).
Yes, here the finite size of $B$ is used.

Kiwi said:
Q4. Let A be the integers and B the positive integers. One example of f is f = x^2. Now f^{-1} = x^{1/2} is not in G because sqrt(2) is not in G. So G is not closed under inverses when B is the positive integers.
This $f$ is not a permutation of $A$.
 
If I chose A to be the positive reals and B to be the positive integers then f will be a permutation in A and G will not be closed under inversion?
 
Yes.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
18
Views
2K
Replies
13
Views
565
Replies
23
Views
2K
Replies
14
Views
3K
Replies
6
Views
2K
Replies
3
Views
431
Replies
7
Views
2K
Replies
1
Views
2K
Replies
7
Views
2K
Back
Top