MHB Properties of permutation of a set

Click For Summary
The discussion centers on two problems related to permutations of sets. In Problem 3, it is established that the set G, consisting of permutations of a finite set A that map a subset B to itself, forms a subgroup of the symmetric group S_A due to closure under composition and the existence of inverses. In Problem 4, the challenge is to demonstrate that this property does not hold for infinite sets, with examples provided that illustrate the failure of G to be closed under inverses when A is infinite. The arguments highlight the importance of the finiteness of B in maintaining the subgroup properties. Overall, the discussion emphasizes the distinction between finite and infinite sets in group theory.
Kiwi1
Messages
106
Reaction score
0
I am doing some self study of groups and can solve problem #3 but not Problem #4.

Problem 3.
Let A be a finite set, and B a subset of A. Let G be the subset of S_A consisting of all of the permutations f of A such that f(x) is in B for every x in B. Prove that G is a subgroup of S_A.

Problem 4.
Give an example to show that the conclusion of part 3 is not necessarily true if A is an infinite set.

Problem 3.
I can show that G is closed under composition and I know that inverses exist because f is a one-one permutation. So G is a sub group.

Problem 4.
First I can't see any implicit use of the fact that A is finite in my solution to part 3.

I believe that G has infinite members because for each member of G there are an infinite number of other members that permute the members of A-B in different ways.

If I let A be the positive rational no's and B =(0,1) then f(x)=x^n and x^(1/n) are in G. Seems OK.
 
Physics news on Phys.org
Kiwi said:
Problem 3.
Let A be a finite set, and B a subset of A. Let G be the subset of S_A consisting of all of the permutations f of A such that f(x) is in B for every x in B. Prove that G is a subgroup of S_A.

...

Problem 3.
I can show that G is closed under composition and I know that inverses exist because f is a one-one permutation.
You need to show not only that the inverse exists in $S_A$, but that it belongs to $G$.
 
Evgeny.Makarov said:
You need to show not only that the inverse exists in $S_A$, but that it belongs to $G$.

1. f is a bijection from A to A. So f inverse exists in A.
2. f is also injective from B to B because if it weren't then the image of B would have fewer elements than B (not certain if this is true if B has infinite elements).
3. f is also surjective from B to B because if it weren't then (being injective) the domain B would be larger than the image B (not certain if this is true if B has infinite elements).
4. So f is a bijective function from B to B. Hence it has an inverse in B.

So my argument relights upon counting the elements in B. Presumably this does not hold if A (and hence B) have an infinite number of elements.Q4. Let A be the integers and B the positive integers. One example of f is f = x^2. Now f^{-1} = x^{1/2} is not in G because sqrt(2) is not in G. So G is not closed under inverses when B is the positive integers.

Are my arguments sound?
 
Kiwi said:
2. f is also injective from B to B because if it weren't then the image of B would have fewer elements than B (not certain if this is true if B has infinite elements).
Injectivity is always preserved when we take a restriction of a function.

Kiwi said:
3. f is also surjective from B to B because if it weren't then (being injective) the domain B would be larger than the image B (not certain if this is true if B has infinite elements).
Yes, here the finite size of $B$ is used.

Kiwi said:
Q4. Let A be the integers and B the positive integers. One example of f is f = x^2. Now f^{-1} = x^{1/2} is not in G because sqrt(2) is not in G. So G is not closed under inverses when B is the positive integers.
This $f$ is not a permutation of $A$.
 
If I chose A to be the positive reals and B to be the positive integers then f will be a permutation in A and G will not be closed under inversion?
 
Yes.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
439
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 26 ·
Replies
26
Views
753
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
790
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
423