MHB Property of independent random variables

alfred2
Messages
8
Reaction score
0
hello!

I'm trying to understand the following property:
Let X and Y be independent random variables z: = X + Y. Then
http://imageshack.us/a/img268/9228/71pe.png
where fZ (z) is the probability mass function for a discrete random variable defined as follows:

http://imageshack.us/a/img801/9218/q71.png

and Wx is the set of possible values ​​for the random variable X

Proof: Using the Law of total probability, which is this:
http://imageshack.us/a/img198/8461/qbn.png
we obtain
http://imageshack.us/a/img855/2067/mbd4.png
Question-I don't see how Law of total probability helps us. I even don't understand how we get the first line of the proof-End of Question

Then my book proposes this example: We roll two dices. Let X/Y random variables, which indicate the number of points in the first/second die. We calculate the density of Z: = X + Y:
http://imageshack.us/a/img10/7541/5fx.png
For 2 <= z <= 7 we obtain
http://imageshack.us/a/img17/9047/stvo.png
And 7 <z <= 12:
http://imageshack.us/a/img90/5522/fuz.png
Here I just get that:
http://imageshack.us/a/img593/7442/ok0i.png
But I do not understand why we have this index of summation nor why we put min and max in the next step
Could you help me please? Thank you!
 
Mathematics news on Phys.org
alfred said:
Then my book proposes this example: We roll two dices. Let X/Y random variables, which indicate the number of points in the first/second die. We calculate the density of Z: = X + Y:
http://imageshack.us/a/img10/7541/5fx.png
For 2 <= z <= 7 we obtain
http://imageshack.us/a/img17/9047/stvo.png
And 7 <z <= 12:
http://imageshack.us/a/img90/5522/fuz.png
Here I just get that:
http://imageshack.us/a/img593/7442/ok0i.png
But I do not understand why we have this index of summation nor why we put min and max in the next step
Could you help me please? Thank you!
The number of spots on the first die is $x$, and on the second die is $y$. You want to know when the sum $x+y$ (the total number of spots on the two dice) is equal to $z$.

If the sum of the spots on the two dice is to be $z$, given that $X=x$, then obviously $x$ must be at least $1$ (because that is the smallest possible value for $x$). But also $x$ must be at least $z-6$ (because $y = z-x$, and $y$ cannot be larger than $6$). Thus we must have $x\geqslant \max\{1,z-6\}$. Next, $x$ cannot be bigger than $6$ (obviously), but also $x$ must not be bigger than $z-1$ (because $y = z-x$, and $y$ cannot be less than $1$). Thus we must have $x\leqslant \min\{6,z-1\}$. Provided both those conditions hold, there will then be a probability of $1/6$ that $y$ will be equal to $z-x$. That is where the expression $$\sum_{x=\max\{1,z-6\}}^{\min\{6,z-1\}}\frac1{36}$$ comes from.

I think that if you follow this example carefully, you will begin to see how the proof in the first part of your post works.
 
alfred said:
Okay, so we have got as far as $$\text{Pr}[Z=z] = \frac16 \sum_{x=\max\{1,z-6\}}^{\min\{6,z-1\}}\text{Pr}[Y= z-x]$$. In that formula, $z$ is fixed. Once we are inside the summation, $x$ is also fixed, because at that stage we are dealing with what happens for a particular value of $x$. So $\text{Pr}[Y= z-x]$ is the probability that $y$ takes the fixed value $z-x$. And of course the probability that $y$ takes any given single value (in the range 1,...,6) is 1/6.

That gives the formula $$\text{Pr}[Z=z] = \sum_{x=\max\{1,z-6\}}^{\min\{6,z-1\}}\frac1{36} $$. Thus each term in the sum is equal to 1/36, and to evaluate the sum we have to multiply 1/36 by the number of terms. If $z$ lies between 2 and 7, then $\max\{1,z-6\} = 1$ and $\min\{6,z-1\} = z-1$. So the sum goes from $x=1$ to $x=z-1$. Hence there are $z-1$ terms in the sum, and since each term is equal to 1/36, the sum is $$\frac{z-1}{36}$$. In a similar way, you should be able to work out that if $z$ lies between 7 and 12 then the number of terms in the sum is $13-z$ and so their sum is $$\frac{13-z}{36}$$.
 
Opalg said:
Okay, so we have got as far as $$\text{Pr}[Z=z] = \frac16 \sum_{x=\max\{1,z-6\}}^{\min\{6,z-1\}}\text{Pr}[Y= z-x]$$. In that formula, $z$ is fixed. Once we are inside the summation, $x$ is also fixed, because at that stage we are dealing with what happens for a particular value of $x$. So $\text{Pr}[Y= z-x]$ is the probability that $y$ takes the fixed value $z-x$. And of course the probability that $y$ takes any given single value (in the range 1,...,6) is 1/6.

That gives the formula $$\text{Pr}[Z=z] = \sum_{x=\max\{1,z-6\}}^{\min\{6,z-1\}}\frac1{36} $$. Thus each term in the sum is equal to 1/36, and to evaluate the sum we have to multiply 1/36 by the number of terms. If $z$ lies between 2 and 7, then $\max\{1,z-6\} = 1$ and $\min\{6,z-1\} = z-1$. So the sum goes from $x=1$ to $x=z-1$. Hence there are $z-1$ terms in the sum, and since each term is equal to 1/36, the sum is $$\frac{z-1}{36}$$. In a similar way, you should be able to work out that if $z$ lies between 7 and 12 then the number of terms in the sum is $13-z$ and so their sum is $$\frac{13-z}{36}$$.

Thank you very much! I understand it with your explanation. =D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top