MHB Property of Matrix Multiplication

Yankel
Messages
390
Reaction score
0
Hello, I wanted to ask if this is a correct move, A and B are matrices, a is a scalar, thank you !

A^{2}\cdot B^{t}-aA=A(A\cdot B^{t}-aI)
 
Physics news on Phys.org
Yankel said:
Hello, I wanted to ask if this is a correct move, A and B are matrices, a is a scalar, thank you !

A^{2}\cdot B^{t}-aA=A(A\cdot B^{t}-aI)
Seems correct to me.
 
Yankel said:
Hello, I wanted to ask if this is a correct move, A and B are matrices, a is a scalar, thank you !

A^{2}\cdot B^{t}-aA=A(A\cdot B^{t}-aI)

Hi Yankel, :)

Yes, its correct because matrix multiplication is distributive over matrix addition.

Kind Regards,
Sudharaka.
 
Thank you !
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top