Prove ##(a+b) + c = a + (b+c)## using Peano postulates

Click For Summary
SUMMARY

The forum discussion centers on proving the associative law for addition, specifically the equation (a+b) + c = a + (b+c), using Peano postulates. The proof establishes the set G, which contains elements z in the natural numbers such that (x + y) + z = x + (y + z) for all x, y in the natural numbers. It demonstrates that 1 is in G and that if r is in G, then the successor s(r) is also in G, leading to the conclusion that G equals the set of natural numbers, thus validating the associative law for a, b, c in the natural numbers. The discussion also clarifies the definition of addition based on the successor function.

PREREQUISITES
  • Understanding of Peano postulates and their implications in number theory.
  • Familiarity with the successor function and its role in defining natural numbers.
  • Knowledge of binary operations and their properties in mathematics.
  • Basic comprehension of mathematical proofs and logical reasoning.
NEXT STEPS
  • Study the Peano postulates in detail to understand their foundational role in arithmetic.
  • Learn about the successor function and its applications in defining operations on natural numbers.
  • Explore the concept of free monoids and their relationship to natural numbers and operations.
  • Investigate the properties of addition, including commutativity and associativity, in various mathematical contexts.
USEFUL FOR

Mathematicians, students of mathematics, and educators interested in foundational number theory and the properties of natural numbers will benefit from this discussion.

issacnewton
Messages
1,035
Reaction score
37
Homework Statement
Prove ##(a+b) + c = a + (b+c)## using Peano postulates
Relevant Equations
Peano postulates
I have to prove the associative law for addition ##(a+b) + c = a + (b+c)## using Peano postulates, given that ##a, b, c \in \mathbb{N}##. Now define the set

$$ G = \{ z \in \mathbb{N} |\forall\; x, y \in \mathbb{N} \quad (x + y) + z = x + (y + z) \} $$

Obviously, ## G \subseteq \mathbb{N} ##. Now ## 1 \in \mathbb{N} ## according to Peano postulates. Let ##x, y \in \mathbb{N} ## be arbitrary.
Using the way addition function is defined using the successor function, we have ## (x + y) + 1 = s(x + y) ##. But ##s(x + y) = x + s(y) ## and ## s(y) = y + 1##. So, we have ##(x + y) + 1 = x + s(y) = x + (y + 1)##. This means that ## 1 \in G##.

Now, suppose ##r \in G##. This means that ##r \in \mathbb{N} ## and

$$ \forall\; x, y \in \mathbb{N} \quad (x + y) + r = x + (y + r) $$

Suppose ##x, y \in \mathbb{N} ## be arbitrary. Since, ##r \in G##, we have

$$ (x + y) + r = x + (y + r) $$
$$ \therefore s((x + y) + r) = s( x + (y + r) ) $$

Using definition of addition function, we have

$$ \therefore (x + y) + s(r) = x + s(y + r) = x + (y + s(r)) $$
$$ \therefore (x + y) + s(r) = x + (y + s(r)) $$

From definition of successor function, ## s(r) \in \mathbb{N} ##. Hence ##s(r) \in G##. So, using Peano postulates, ## G = \mathbb{N}##.

Since ##a, b, c \in \mathbb{N}##, we have ## c \in G##. It follows that ##(a+b) + c = a + (b+c)##. Is this proof correct ?
 
  • Like
Likes   Reactions: PeroK
Physics news on Phys.org
Do you define ##\mathbb{N}## such that 0 is an element? If so, you didn't show ##0 \in G##, so you can't conclude ##G = \mathbb{N}##.
 
No, I define ##\mathbb{N}## such that ##1 \in \mathbb{N}##. Following is a set of Peano postulates I am using.

There exists a set ##\mathbb{N}## with an element ##1 \in \mathbb{N}## and a function ##s: \mathbb{N} \rightarrow \mathbb{N} ## that satisfy the following three properties.

1) There is no ##n \in \mathbb{N}## such that ##s(n) = 1##

2) The function ##s## is injective.

3) Let ##G \subseteq \mathbb{N}## be a set. Suppose that ##1 \in G##, and that if ##g \in G## then ##s(g) \in G##. Then ## G = \mathbb{N} ##

I just got in reply for my post. Is this because this is a physics forum and very few mathematicians visit this forum ?
 
There are a number of mathematicians around here. I don’t know why none replied to your question earlier.
 
  • Like
Likes   Reactions: PeroK
So vela, is the proof correct ? Can you please comment ?
 
Looks good to me.
 
  • Like
Likes   Reactions: issacnewton
issacnewton said:
No, I define ##\mathbb{N}## such that ##1 \in \mathbb{N}##. Following is a set of Peano postulates I am using.

There exists a set ##\mathbb{N}## with an element ##1 \in \mathbb{N}## and a function ##s: \mathbb{N} \rightarrow \mathbb{N} ## that satisfy the following three properties.

1) There is no ##n \in \mathbb{N}## such that ##s(n) = 1##

2) The function ##s## is injective.

3) Let ##G \subseteq \mathbb{N}## be a set. Suppose that ##1 \in G##, and that if ##g \in G## then ##s(g) \in G##. Then ## G = \mathbb{N} ##

I just got in reply for my post. Is this because this is a physics forum and very few mathematicians visit this forum ?
It was helpful to me that you posted the set of Peano postulates that you were using.

I agree with @vela: Your proof looks good.
 
  • Like
Likes   Reactions: berkeman
issacnewton said:
So vela, is the proof correct ? Can you please comment ?
I tried to follow your proof, but I couldn't figure out what is the definition of the binary operation ##+##?
 
PeroK, sorry for late reply. I am not getting email notifications. I will have to check settings. I am using the book "The real numbers and real analysis" by Ethan Bloch . He uses the following theorem as the definition of +.

There is a unique binary operation ##+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} ## that satisfies the following two properties for all ##n, m \in \mathbb{N} ##

a. ## n + 1 = s(n) ##
b. ## n + s(m) = s(n + m) ##
 
  • Like
Likes   Reactions: PeroK
  • #10
issacnewton said:
Homework Statement: Prove ##(a+b) + c = a + (b+c)## using Peano postulates
Relevant Equations: Peano postulates

I have to prove the associative law for addition ##(a+b) + c = a + (b+c)## using Peano postulates, given that ##a, b, c \in \mathbb{N}##. Now define the set

$$ G = \{ z \in \mathbb{N} |\forall\; x, y \in \mathbb{N} \quad (x + y) + z = x + (y + z) \} $$

Obviously, ## G \subseteq \mathbb{N} ##. Now ## 1 \in \mathbb{N} ## according to Peano postulates. Let ##x, y \in \mathbb{N} ## be arbitrary.
Using the way addition function is defined using the successor function, we have ## (x + y) + 1 = s(x + y) ##. But ##s(x + y) = x + s(y) ## and ## s(y) = y + 1##. So, we have ##(x + y) + 1 = x + s(y) = x + (y + 1)##. This means that ## 1 \in G##.

Now, suppose ##r \in G##. This means that ##r \in \mathbb{N} ## and

$$ \forall\; x, y \in \mathbb{N} \quad (x + y) + r = x + (y + r) $$

Suppose ##x, y \in \mathbb{N} ## be arbitrary. Since, ##r \in G##, we have

$$ (x + y) + r = x + (y + r) $$
$$ \therefore s((x + y) + r) = s( x + (y + r) ) $$

Using definition of addition function, we have

$$ \therefore (x + y) + s(r) = x + s(y + r) = x + (y + s(r)) $$
$$ \therefore (x + y) + s(r) = x + (y + s(r)) $$

From definition of successor function, ## s(r) \in \mathbb{N} ##. Hence ##s(r) \in G##. So, using Peano postulates, ## G = \mathbb{N}##.

Since ##a, b, c \in \mathbb{N}##, we have ## c \in G##. It follows that ##(a+b) + c = a + (b+c)##. Is this proof correct ?
Algebraically this is much simpler, you just have to prove that every non-zero natural is an nth successor of 1. Prove that 1 under the recurrence definition of addition is associative with itself, prove that the successor of a number is just it + 1 (which is either trivial or definition). As a bonus you can also conclude commutativity which is nice.
(This argument involves some additional things, but I'm just mentioning the main ideas, it'll probably be simple to know how to proceed knowing this).

Essentially you're just proving that the naturals are the free monoid with 1 generator (up to isomorphism).
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
20
Views
4K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K