MHB Prove A < B with Log Inequality $\pi\approx3.1416$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality Log
AI Thread Summary
The discussion centers on proving that A is less than B, where A is defined as A = 1/log5(19) + 2/log3(19) + 3/log2(19) and B as B = 1/log2(π) + 1/log5(π). Calculations show A is approximately 1.999 and B is approximately 1.565 with the original definition of B, but redefining B leads to B being approximately 2.011, which complicates the proof. The relationship log_ab = ln(b)/ln(a) is used to analyze A and B further, indicating that A < 2 and B > 2 under certain conditions. The conversation highlights the nuances in defining B and the implications for the inequality A < B.
Albert1
Messages
1,221
Reaction score
0
$\pi\approx3.1416$

$A=\dfrac{1}{log_5 19}+\dfrac{2}{log_3 19}+\dfrac{3}{log_2 19}$

$B=\dfrac{1}{log_2\pi}+\dfrac{1}{log_3\pi}$

edit :$B=\dfrac{1}{log_2\pi}+\dfrac{1}{log_{\color{red}5}\pi}$
$Prove: \,\, A < B$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$\pi\approx3.1416$

$A=\dfrac{1}{log_5 19}+\dfrac{2}{log_3 19}+\dfrac{3}{log_2 19}$

$B=\dfrac{1}{log_2\pi}+\dfrac{1}{log_3\pi}$

$Prove: \,\, A < B$
Is this correct? My calculator gives $A\approx 1.999$ and $B\approx 1.565$. If you define $B=\dfrac{1}{log_2\pi}+\dfrac{1}{log_{\color{red}5}\pi}$ then you get $B\approx 2.011$, which makes for a more interesting problem.

[sp]Using the relation $\log_ab = \dfrac{\ln b}{\ln a}$, you find that $A = \dfrac{\ln 360}{\ln 19} <\dfrac{\ln 361}{\ln 19} =2$ (because $361 = 19^2$). But, using my definiton of $B$, $B = \dfrac{\ln 10}{\ln\pi} > 2$ because $\pi^2<10.$[/sp]
 
Opalg said:
Is this correct? My calculator gives $A\approx 1.999$ and $B\approx 1.565$. If you define $B=\dfrac{1}{log_2\pi}+\dfrac{1}{log_{\color{red}5}\pi}$ then you get $B\approx 2.011$, which makes for a more interesting problem.

[sp]Using the relation $\log_ab = \dfrac{\ln b}{\ln a}$, you find that $A = \dfrac{\ln 360}{\ln 19} <\dfrac{\ln 361}{\ln 19} =2$ (because $361 = 19^2$). But, using my definiton of $B$, $B = \dfrac{\ln 10}{\ln\pi} > 2$ because $\pi^2<10.$[/sp]
sorry ! a typo :o
the original post has been edited
$B=\dfrac{1}{log_2\pi}+\dfrac{1}{log_{\color{red}5}\pi}$
and your solution is :cool:
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Just chatting with my son about Maths and he casually mentioned that 0 would be the midpoint of the number line from -inf to +inf. I wondered whether it wouldn’t be more accurate to say there is no single midpoint. Couldn’t you make an argument that any real number is exactly halfway between -inf and +inf?
Back
Top