Prove a Polynomial has no real roots

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Polynomial Roots
Click For Summary

Discussion Overview

The discussion revolves around proving that polynomials of the form \(P_n(x)=x^{2n}-2x^{2n-1}+3x^{2n-2}-...-2nx+2n+1\) have no real roots. Participants explore various approaches, including induction and analysis of minimum values, to establish the non-existence of real roots for these polynomials.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose using the polynomial \(Q_n(x) = (x-1)^2(x^{2n-2} + 2x^{2n-4} + 3x^{2n-6} + \ldots + n) + (n+1)\) to show that \(Q_n(x) > 0\) for all \(x\), which implies \(P_n(x)\) has no real roots.
  • It is noted that \(Q_n(x)\) achieves its minimum value of \(n+1\) at \(x=1\), reinforcing the argument that \(P_n(x)\) does not cross the x-axis.
  • Participants discuss an inductive proof where the base case \(P_1(x) = Q_1(x) = x^2 - 2x + 3\) is verified, and an inductive step is outlined to show \(P_{n+1}(x) = Q_{n+1}(x)\) based on the assumption that \(P_n(x) = Q_n(x)\).
  • Another participant suggests that examining small values of \(n\) reveals that each \(P_n(x)\) has its minimum at \(x=1\) with a value of \(n+1\), leading to the conclusion that \(P_n(x) - (n+1)\) has a factor of \((x-1)^2\).
  • There is a discussion about an alternative expression for \(P_n(x)\) that indicates \(P_n(x) > 0\) for \(x > 0\), though the minimum value remains unclear in this context.

Areas of Agreement / Disagreement

Participants generally agree on the approach of using \(Q_n(x)\) to demonstrate that \(P_n(x)\) has no real roots, but there are differing views on the clarity and implications of alternative expressions and methods presented.

Contextual Notes

Some expressions and assumptions about minimum values and the behavior of \(P_n(x)\) for various \(n\) are discussed, but there are unresolved questions regarding the implications of certain formulations and the exact nature of the minimum values.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove that polynomials of the form:\[P_n(x)=x^{2n}-2x^{2n-1}+3x^{2n-2}-...-2nx+2n+1, \: \: n = 1,2,...\]- have no real roots.
 
Mathematics news on Phys.org
lfdahl said:
Prove that polynomials of the form:\[P_n(x)=x^{2n}-2x^{2n-1}+3x^{2n-2}-...-2nx+2n+1, \: \: n = 1,2,...\]- have no real roots.
[sp]Let $Q_n(x) = (x-1)^2(x^{2n-2} + 2x^{2n-4} + 3x^{2n-6} + \ldots + n) + (n+1)$. Then $Q_n(x)>0$ for all $x$. (In fact, $Q_n(x)$ has minimum value $n+1$, when $x=1$, because each term in the expression for $Q_n(x)$ is an even power of either $x$ or $x-1$.) So $Q_n(x)$ has no real roots. It will therefore be sufficient to show that $P_n(x) = Q_n(x).$

To prove that by induction, the base case $P_1(x) = Q_1(x) = x^2 - 2x + 3$ is easy to check.

Suppose that $P_n(x) = Q_n(x)$ for some $n$. Then $$\begin{aligned} P_{n+1}(x) &= x^{2n+2}-2x^{2n+1}+3x^{2n}- \ldots -(2n+2)x + (2n+3) \\ &= x^2\bigl(x^{2n}-2x^{2n-1}+3x^{2n-2}- \ldots + (2n+1)\bigr) -(2n+2)x + (2n+3) \\ &= x^2P_n(x) -(2n+2)x + (2n+3) \\ &= x^2Q_n(x) -(2n+2)x + (2n+3) \\ &= x^2(x-1)^2(x^{2n-2} + 2x^{2n-4} + 3x^{2n-6} + \ldots + n) + (n+1)x^2 -(2n+2)x + (2n+3) \\ &= (x-1)^2(x^{2n} + 2x^{2n-2} + 3x^{2n-4} + \ldots + nx^2) + (n+1)(x-1)^2 + (n+2) \\ &= (x-1)^2\bigl(x^{2n} + 2x^{2n-2} + 3x^{2n-4} + \ldots + nx^2 + (n+1)\bigr) + (n+2) \\ &= Q_{n+1}(x) .\end{aligned}$$ That completes the inductive step.[/sp]
 
Opalg said:
[sp]Let $Q_n(x) = (x-1)^2(x^{2n-2} + 2x^{2n-4} + 3x^{2n-6} + \ldots + n) + (n+1)$. Then $Q_n(x)>0$ for all $x$. (In fact, $Q_n(x)$ has minimum value $n+1$, when $x=1$, because each term in the expression for $Q_n(x)$ is an even power of either $x$ or $x-1$.) So $Q_n(x)$ has no real roots. It will therefore be sufficient to show that $P_n(x) = Q_n(x).$

To prove that by induction, the base case $P_1(x) = Q_1(x) = x^2 - 2x + 3$ is easy to check.

Suppose that $P_n(x) = Q_n(x)$ for some $n$. Then $$\begin{aligned} P_{n+1}(x) &= x^{2n+2}-2x^{2n+1}+3x^{2n}- \ldots -(2n+2)x + (2n+3) \\ &= x^2\bigl(x^{2n}-2x^{2n-1}+3x^{2n-2}- \ldots + (2n+1)\bigr) -(2n+2)x + (2n+3) \\ &= x^2P_n(x) -(2n+2)x + (2n+3) \\ &= x^2Q_n(x) -(2n+2)x + (2n+3) \\ &= x^2(x-1)^2(x^{2n-2} + 2x^{2n-4} + 3x^{2n-6} + \ldots + n) + (n+1)x^2 -(2n+2)x + (2n+3) \\ &= (x-1)^2(x^{2n} + 2x^{2n-2} + 3x^{2n-4} + \ldots + nx^2) + (n+1)(x-1)^2 + (n+2) \\ &= (x-1)^2\bigl(x^{2n} + 2x^{2n-2} + 3x^{2n-4} + \ldots + nx^2 + (n+1)\bigr) + (n+2) \\ &= Q_{n+1}(x) .\end{aligned}$$ That completes the inductive step.[/sp]

Thankyou very much, Opalg for another brilliant answer!

I am curious :o. Please explain how on Earth you came up with the expression for $Q_n(x)$.
Thankyou in advance.

- - - Updated - - -

An alternative approach:

Note, that $P_n(x) > 0$ for $x \le 0$, since the terms with negative coefficients are multiplied by odd powers of $x$.

Now,
\[P_n(x)+xP_n(x) = x\left ( x^{2n}-x^{2n-1}+x^{2n-2}-...-x+1 \right )+2n+1\]
- so
$$P_n(x) = x\frac{x^{2n+1}+1}{(x+1)^2}+\frac{2n+1}{x+1} \Rightarrow P_n(x) > 0,\: \: x>0.\]
Done.
 
Last edited:
lfdahl said:
I am curious :o. Please explain how on Earth you came up with the expression for $Q_n(x)$.
[sp]That just came from looking at what happens for small values of $n$. You soon find that each $P_n(x)$ (for $n=1,2,3$) has its minimum value when $x=1$, and that this minimum value is $n+1$. That leads to the discovery that $P_n(x) - (n+1)$ has a factor $(x-1)^2$. The quotient of $P_n(x) - (n+1)$ by that factor is $Q_n(x).$[/sp]

lfdahl said:
$$P_n(x) = x\frac{x^{2n+1}+1}{x+1}+2n+1\Rightarrow P_n(x) > 2n+1,\: \: x>0.$$
[sp]That should be $$(1+x)P_n(x) = x\frac{x^{2n+1}+1}{x+1}+2n+1$$, which certainly shows that $P_n(x)>0$ for $x>0$. But it is not so clear from that expression what the minimum value of $P_n(x)$ should be (in fact, it is $n+1$, not $2n+1$).[/sp]
 
[sp]That should be $$(1+x)P_n(x) = x\frac{x^{2n+1}+1}{x+1}+2n+1$$, which certainly shows that $P_n(x)>0$ for $x>0$. But it is not so clear from that expression what the minimum value of $P_n(x)$ should be (in fact, it is $n+1$, not $2n+1$).[/sp]

Oh, yes. I´m sorry for my typo ... I´ll edit my solution right away.
Thankyou, also for explaining the idea that led to the expression of $Q_n(x)$.
 
Last edited:

Similar threads

  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K