MHB Prove Algebra Challenge: $(x,y,z,a,b,c)$ Equation

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
Click For Summary
The discussion revolves around proving the equation $x^3a + y^3b + z^3c = 1 - (1 - x)(1 - y)(1 - z)$ under the conditions that $a + b + c = ax + by + cz = x^2a + y^2b + z^2c = 1$. Participants clarify the correct formulation of the equation, emphasizing the need for accurate variable representation. The consensus is that the proof hinges on the established relationships among the variables. The challenge invites further exploration of algebraic identities and relationships. This mathematical inquiry highlights the interconnectedness of the variables in the given constraints.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For reals $x,\,y,\,z$ and $a,\,b$ and $c$ that satisfy $a + b + c = ax + by + cz = x^2a + y^2b + z^2c = 1$,

prove that $x^3a + y^3b + cz^3c = 1 − (1 − x)(1 − y)(1 − z)$
 
Mathematics news on Phys.org
anemone said:
For reals $x,\,y,\,z$ and $a,\,b$ and $c$ that satisfy $a + b + c = ax + by + cz = x^2a + y^2b + z^2c = 1$,

prove that $x^3a + y^3b + cz^3c = 1 − (1 − x)(1 − y)(1 − z)$

I think you mean
prove that $x^3a + y^3b + z^3c = 1 − (1 − x)(1 − y)(1 − z)$

we are given
$a+b+c=\cdots(1)$
$ax+by+cz=1\cdots(2)$
$ax^2+by^2+cz^2 = 1\cdots(3)$
so we have
$x^3a+y^3b+z^3c$
= $x( 1- y^2b-z^2c) + y (1-x^2a-z^2c) + z(1-x^2a-y^2b)$ using (3)
= $x+y+z- xy(by+ax) - zx(cz+ax) - yz(by+cz)$
= $x+y+z-xy(1-cz) - zx(1-by) - yz(1-ax)$ using (2) in each of 3 expressions
= $x+y+z - xy - zx - yz + xyz(c+b+a)$
= $x+y+z - xy - zx - yz + xyz$ using (1)
= $x-xy-xz +xyz + y + z - yz$
= $x(1-y-z+yz) + (y+z-yz)$
=$x(1-y)(1-z) - (1-y)(1-z)+1$
= $1 + (x-1)(1-y)(1-z)$
= $1- (1-x)(1-y)(1-z)$
 
Last edited:
kaliprasad said:
I think you mean
prove that $x^3a + y^3b + z^3c = 1 − (1 − x)(1 − y)(1 − z)$

we are given
$a+b+c=\cdots(1)$
$ax+by+cz=1\cdots(2)$
$ax^2+by^2+cz^2 = 1\cdots(3)$
so we have
$x^3a+y^3b+z^3c$
= $x( 1- y^2b-z^2c) + y (1-x^2a-z^2c) + z(1-x^2a-y^2b)$ using (3)
= $x+y+z- xy(by+ax) - zx(cz+ax) - yz(by+cz)$
= $x+y+z-xy(1-cz) - zx(1-by) - yz(1-ax)$ using (2) in each of 3 expressions
= $x+y+z - xy - zx - yz + xyz(c+b+a)$
= $x+y+z - xy - zx - yz + xyz$ using (1)
= $x-xy-xz +xyz + y + z - yz$
= $x(1-y-z+yz) + (y+z-yz)$
=$x(1-y)(1-z) - (1-y)(1-z)+1$
= $1 + (x-1)(1-y)(1-z)$
= $1- (1-x)(1-y)(1-z)$

Perfect, kaliprasad!:cool:
 

Similar threads

Replies
1
Views
2K
Replies
4
Views
1K
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K