Prove an element and its inverse have same order

  • Thread starter Thread starter sheepishlion
  • Start date Start date
  • Tags Tags
    Element Inverse
Click For Summary
In a group, the order of an element and its inverse is the same, which can be proven by showing that if |g|=m and |g^-1|=n, then g^m=e and (g^-1)^n=e. By manipulating the equations, one can demonstrate that m divides n and n divides m, leading to the conclusion that m=n. The initial approach lacked clarity, particularly in avoiding the use of inequalities, as groups are not ordered structures. A more straightforward method involves multiplying both sides of the equation by the appropriate powers of g to derive the necessary divisibility relationships. This proof effectively confirms that the orders of an element and its inverse are equal.
sheepishlion
Messages
1
Reaction score
0

Homework Statement


Prove that in any group, an element and its inverse have the same order.


Homework Equations


none


The Attempt at a Solution


I know that I need to show |g|=|g^-1|. This is how I approached it but I'm not sure I'm right, it seems like I'm missing something.
Let |g|=m and |g^-1|=n for g, g^-1 elements of G. Then (g)^m=e and (g^-1)^n=e. Therefore, either (g)^m <= (g^-1)^n or (g)^m >= (g^-1)^n. If (g)^m <= (g^-1)^n then e<=e and m<=n. If (g)^m >= (g^-1)^n then e>=e and m >= n. Therefore m = n and |g|=|g^-1|.
 
Last edited:
Physics news on Phys.org
It's right in spirit. But lacks in presentation. Sure, if x^k=e then (x^(-1))^k=e^(-1)=e. Now just use the definition of '|x|'. Don't use '<' for the elements of the group. Groups generally aren't ordered.
 
Last edited:
sheepishlion said:

Homework Statement


Prove that in any group, an element and its inverse have the same order.


Homework Equations


none


The Attempt at a Solution


I know that I need to show |g|=|g^-1|. This is how I approached it but I'm not sure I'm right, it seems like I'm missing something.
Let |g|=m and |g^-1|=n for g, g^-1 elements of G. Then (g)^m=e and (g^-1)^n=e. Therefore, either (g)^m <= (g^-1)^n or (g)^m >= (g^-1)^n. If (g)^m <= (g^-1)^n then e<=e and m<=n. If (g)^m >= (g^-1)^n then e>=e and m >= n. Therefore m = n and |g|=|g^-1|.


I might be misreading your attempted solution, but I don't understand what you mean by f^m <= (g^-1)^n.

Here is a start: Let m = ord(g) and n = ord(g^-1). Then g^m = (g^-1)^n. Now, multiply on the left by g^n to get: (g^n)(g^m) = e. Since g^m=e, we must have that g^n = e, from which we see that m|n (that means m divides n.) Now, all you need to do is to show that n|m (n divides m) to show that m=n. To do that, you have to do something really similar to what I did.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K