MHB Prove Divisibility: $(x-y)^2+(y-z)^2+(z-x)^2=xyz$ yields $x^3+y^3+z^3$

Click For Summary
The equation $(x-y)^2+(y-z)^2+(z-x)^2=xyz$ establishes a relationship among the integers x, y, and z. The goal is to prove that the expression $x^3+y^3+z^3$ is divisible by $x+y+z+6$. Participants in the discussion explore various algebraic manipulations and substitutions to demonstrate this divisibility. The proof involves analyzing the conditions under which the initial equation holds and applying properties of symmetric polynomials. Ultimately, the conclusion reinforces the divisibility of the cubic sum by the linear expression.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be integers such that $(x-y)^2+(y-z)^2+(z-x)^2=xyz$, prove that $x^3+y^3+z^3$ is divisible by $x+y+z+6$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z$ be integers such that $(x-y)^2+(y-z)^2+(z-x)^2=xyz$, prove that $x^3+y^3+z^3$ is divisible by $x+y+z+6$.

We know $x^3+y^3+z^3 - 3xyz = \frac{1}{2}(x+y+z)((x-y)^2 + (y-z)^2 + (z-x)^2)$

Hence $x^3+y^3+z^3 = 3xyz + \frac{1}{2}(x+y+z)((x-y)^2 + (y-z)^2 + (z-x)^2)$

Hence $x^3+y^3+z^3 = 3xyz + \frac{1}{2}(x+y+z)(xyz)$ (putting the value from given condition)

Or $x^3+y^3+z^3 = xyz( 3 + \frac{1}{2}(x+y+z))$

Or $x^3+y^3+z^3 = \frac{xyz}{2}( 6 + x+y+z)$

If we can prove that xyz is even then we are through

As (x-y), (y-z) and (z-x) sum to give zero so atleast one of them is even. So xyz is even from the given condition so $\frac{xyz}{2}$ is an integer and hence $x^3+y^3+z^3$ is multiple of $(6 + x+y+z)$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
1
Views
2K