MHB Prove Equilateral Triangle from Cosine Equality

Click For Summary
SUMMARY

The discussion centers on proving that the equality $2\cos A \cos B \cos C + \cos A \cos B + \cos B \cos C + \cos C \cos A = 1$ indicates that triangle $ABC$ is equilateral. The proof involves demonstrating that this condition uniquely characterizes equilateral triangles by analyzing the implications of the cosine values of the angles. Participants confirmed that the equality holds true specifically for angles of $60^\circ$, reinforcing the conclusion that the triangle must be equilateral.

PREREQUISITES
  • Understanding of trigonometric identities and properties
  • Knowledge of triangle properties, specifically the characteristics of equilateral triangles
  • Familiarity with the cosine function and its application in geometry
  • Basic algebraic manipulation skills to handle trigonometric equations
NEXT STEPS
  • Study the derivation of the Law of Cosines in triangle geometry
  • Explore advanced trigonometric identities and their proofs
  • Investigate the properties of equilateral triangles and their implications in geometry
  • Learn about the relationship between angle measures and side lengths in triangles
USEFUL FOR

This discussion is beneficial for mathematicians, geometry enthusiasts, and students studying trigonometry and triangle properties, particularly those interested in proofs and geometric characterizations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that if in a triangle $ABC$ we have the following equality that holds

$2\cos A \cos B \cos C + \cos A \cos B + \cos B \cos C + \cos C \cos A = 1$

then the triangle will be an equilateral triangle.
 
Mathematics news on Phys.org
anemone said:
Prove that if in a triangle $ABC$ we have the following equality that holds

$S=2\cos A \cos B \cos C + \cos A \cos B + \cos B \cos C + \cos C \cos A = 1---(1)$

then the triangle will be an equilateral triangle.
my solution:
if $(1)$ is true,it is easy to see that triangle $ABC$ must be an acute triangle
(if one of those 3 angles A,or B, or C $\geq 90^o$ then (1) will fail)
that is $0<cos A,cos B,cos C<1$
using $AP\geq GP$
$S\geq 4\sqrt[4]{2cos^3Acos^3Bcos^3C}=1$
(equality occurs at $A=B=C=60^o$)
so it is an equilateral triangle
 
Last edited:
Thanks for participating, Albert!

My solution:

In any triangle $ABC$, we have the following equality that holds:

$1-2\cos A \cos B \cos C=\cos^2 A+\cos^2 B+\cos^2 C$

This turns the given equality to become

$ \cos^2 A+\cos^2 B+\cos^2 C=1-2\cos A \cos B \cos C=\cos A \cos B + \cos B \cos C + \cos C \cos A$

For any angle where $0\lt A,\,B,\,C\lt 180^\circ$, the relation $\cos A \gt \cos B \gt \cos C$ must hold, Now, by applying the rearrangement inequality on $\cos^2 A+\cos^2 B+\cos^2 C$ leads to:

$\cos^2 A+\cos^2 B+\cos^2 C\ge \cos A \cos B + \cos B \cos C + \cos C \cos A$, equality occurs iff $\cos A=\cos B=\cos C$, i.e. $A=B=C$, when that triangle is equilateral, and we're hence done with the proof.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K