MHB Prove f(n) is a product of two consecutive positive integers for all n

Albert1
Messages
1,221
Reaction score
0
$f(n)=\underbrace{111--1}\underbrace{222--2}$
$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n$
prove:$f(n)$ is a product of two consecutive positive integers for all $n\in N$
 
Mathematics news on Phys.org
Albert said:
$f(n)=\underbrace{111--1}\underbrace{222--2}$
$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,n$
prove:$f(n)$ is a product of two consecutive positive integers for all $n\in N$

as n consecutive 1's is $\frac{10^n-1}{9}$ using GP
we have $f(n) = 10^n(\frac{10^{n}-1}{9} + 2 * (\frac{10^{n}-1}{9})$
$= \frac{10^n(10^{n} - 1) + 2(10^n-1)}{9}$
$= \frac{10^{2n} + 10^n -2}{9}$
$=\frac{(10^n-1)(10^n+2)}{9}$
= $(\frac{10^n-1}{3})(\frac{10^n+2}{3})$
= $(\frac{10^n-1}{3})(\frac{10^n-1}{3}+1)$
now $10^n$ leaves a raminder 1 when divided by 3 so $10^n-1$ is divsible by 3 and hence noth the terms above are
integers and difference is one.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top