MHB Prove $\frac{1}{3}\le \frac{u}{v} \le \frac{1}{2}$ with Triangle Sides

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on proving the inequality $\frac{1}{3} \le \frac{u}{v} \le \frac{1}{2}$, where $u = a^2 + b^2 + c^2$ and $v = (a + b + c)^2$ for triangle sides $a$, $b$, and $c$. Participants emphasize the need to demonstrate that the upper limit of $\frac{1}{2}$ cannot be replaced by a smaller number. There is a correction noted regarding a typo in the previous messages. The conversation also highlights the importance of addressing all parts of the question for a complete solution. The thread ultimately seeks clarity on the proof and its implications for triangle side lengths.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $b$ be the lengths of the sides of a triangle. Suppose that $u=a^2+b^2+c^2$ and $v=(a+b+c)^2$.

Prove that $\dfrac{1}{3}\le\dfrac{u}{v}\le\dfrac{1}{2}$ and that the fraction $\dfrac{1}{2}$ on the right cannot be replaced by a smaller number.
 
Mathematics news on Phys.org
we have $(a-b)^2 + (b-c)^2 + (c-a)^2 = a^2-2ab + b^2 + b^2-2bc + c^2 + c^2 -2ac + a^2$
$=(2(a^2+b^2+c^2 - ab + bc + ca) >=0$

or $a^2 + b^2 + c^2 >= ab + bc + ac \cdots(1)$

Now as a, b, c are sides of triangle we have

$a <= b + c$ or $a^2 <= ab + ac\cdots(2)$

similarly $b^2 <= ab + bc\cdots(3)$

and $c^2 <= bc + ac\cdots(4)$

adding (2) ,(3) , (4) we get $a^2 + b^2 + c^2 <= 2ab + 2bc + 2ca\cdots(2)$

Now we have $v = (a+b+c)^2 = (a^2 + b^2 + c^2 + 2(ab+bc+ca) <= (a^2+b^2+c^2) + 2(a^2+b^2+c^2$

or $ v <= 3(a^2+b^2+ c^2$

or $ v<=3u$

or $\frac{1}{3} < = \frac{u}{v}\cdots(5)$

Now for the 2nd part

$2u= u + u = (a^2+b^2+c^2) + (a^2 + b^2 + c^2 ) <= (a^2+b^2+c^2) + 2(ab+bc+ca)$ using (2)

or $2u <= (a+b+c)^2$ or $2u <= v\cdots(6)$

from (5) and (6) we get the result
 
Last edited:
Hi kaliprasad, thanks for participating! But I was wondering if you have somehow missed out the solution to the very last part of the question...
 
anemone said:
Hi kaliprasad, thanks for participating! But I was wondering if you have somehow missed out the solution to the very last part of the question...
There was a typo in 2nd last line it is corrected

I could not complete the part that fraction on the right cannot be replaced by a smaller number

other wise solution is complete
 
About the last part of the question...
If $a=b$ and $c=0$ then $u=2a^2$ and $v=4a^2$. So $\frac uv = \frac12.$ Of course, you cannot have a triangle with one side zero. But suppose you take an isosceles triangle with sides $a$, $a$ and $\varepsilon$. Then $$2u - v = 4a^2 + 2\varepsilon^2 - (2a + \varepsilon)^2 = \varepsilon(4a - \varepsilon),$$ which you can make as small as you like by taking $\varepsilon$ small enough. So $v$ can be made arbitrarily close to $2u$ and thus $\frac uv$ can be made arbitrarily close to $\frac12.$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top