Prove $\frac{1}{3}\le \frac{u}{v} \le \frac{1}{2}$ with Triangle Sides

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around proving the inequality $\frac{1}{3}\le \frac{u}{v} \le \frac{1}{2}$, where $u=a^2+b^2+c^2$ and $v=(a+b+c)^2$, with $a$, $b$, and $c$ being the lengths of the sides of a triangle. The scope includes mathematical reasoning and proof techniques related to inequalities in triangle geometry.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant states the inequality to be proven and asserts that the upper bound of $\frac{1}{2}$ cannot be replaced by a smaller number.
  • Another participant questions whether the original poster has addressed the last part of the question, suggesting there may be an oversight.
  • A subsequent post mentions a correction to a typo in the previous message, indicating ongoing refinement of the discussion.
  • A later post indicates a focus on the last part of the question, but does not provide additional details.

Areas of Agreement / Disagreement

The discussion appears to have unresolved elements, particularly regarding the completeness of the proof and the final part of the question. Multiple viewpoints are present, with some participants seeking clarification and others focusing on specific aspects of the inequality.

Contextual Notes

There may be limitations in the clarity of the proof or assumptions made regarding the triangle sides, as indicated by the ongoing corrections and questions about the completeness of the argument.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $b$ be the lengths of the sides of a triangle. Suppose that $u=a^2+b^2+c^2$ and $v=(a+b+c)^2$.

Prove that $\dfrac{1}{3}\le\dfrac{u}{v}\le\dfrac{1}{2}$ and that the fraction $\dfrac{1}{2}$ on the right cannot be replaced by a smaller number.
 
Mathematics news on Phys.org
we have $(a-b)^2 + (b-c)^2 + (c-a)^2 = a^2-2ab + b^2 + b^2-2bc + c^2 + c^2 -2ac + a^2$
$=(2(a^2+b^2+c^2 - ab + bc + ca) >=0$

or $a^2 + b^2 + c^2 >= ab + bc + ac \cdots(1)$

Now as a, b, c are sides of triangle we have

$a <= b + c$ or $a^2 <= ab + ac\cdots(2)$

similarly $b^2 <= ab + bc\cdots(3)$

and $c^2 <= bc + ac\cdots(4)$

adding (2) ,(3) , (4) we get $a^2 + b^2 + c^2 <= 2ab + 2bc + 2ca\cdots(2)$

Now we have $v = (a+b+c)^2 = (a^2 + b^2 + c^2 + 2(ab+bc+ca) <= (a^2+b^2+c^2) + 2(a^2+b^2+c^2$

or $ v <= 3(a^2+b^2+ c^2$

or $ v<=3u$

or $\frac{1}{3} < = \frac{u}{v}\cdots(5)$

Now for the 2nd part

$2u= u + u = (a^2+b^2+c^2) + (a^2 + b^2 + c^2 ) <= (a^2+b^2+c^2) + 2(ab+bc+ca)$ using (2)

or $2u <= (a+b+c)^2$ or $2u <= v\cdots(6)$

from (5) and (6) we get the result
 
Last edited:
Hi kaliprasad, thanks for participating! But I was wondering if you have somehow missed out the solution to the very last part of the question...
 
anemone said:
Hi kaliprasad, thanks for participating! But I was wondering if you have somehow missed out the solution to the very last part of the question...
There was a typo in 2nd last line it is corrected

I could not complete the part that fraction on the right cannot be replaced by a smaller number

other wise solution is complete
 
About the last part of the question...
If $a=b$ and $c=0$ then $u=2a^2$ and $v=4a^2$. So $\frac uv = \frac12.$ Of course, you cannot have a triangle with one side zero. But suppose you take an isosceles triangle with sides $a$, $a$ and $\varepsilon$. Then $$2u - v = 4a^2 + 2\varepsilon^2 - (2a + \varepsilon)^2 = \varepsilon(4a - \varepsilon),$$ which you can make as small as you like by taking $\varepsilon$ small enough. So $v$ can be made arbitrarily close to $2u$ and thus $\frac uv$ can be made arbitrarily close to $\frac12.$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K