MHB Prove $\frac{1}{3}\le \frac{u}{v} \le \frac{1}{2}$ with Triangle Sides

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion focuses on proving the inequality $\frac{1}{3} \le \frac{u}{v} \le \frac{1}{2}$, where $u = a^2 + b^2 + c^2$ and $v = (a + b + c)^2$ for triangle sides $a$, $b$, and $c$. Participants emphasize the need to demonstrate that the upper limit of $\frac{1}{2}$ cannot be replaced by a smaller number. There is a correction noted regarding a typo in the previous messages. The conversation also highlights the importance of addressing all parts of the question for a complete solution. The thread ultimately seeks clarity on the proof and its implications for triangle side lengths.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $b$ be the lengths of the sides of a triangle. Suppose that $u=a^2+b^2+c^2$ and $v=(a+b+c)^2$.

Prove that $\dfrac{1}{3}\le\dfrac{u}{v}\le\dfrac{1}{2}$ and that the fraction $\dfrac{1}{2}$ on the right cannot be replaced by a smaller number.
 
Mathematics news on Phys.org
we have $(a-b)^2 + (b-c)^2 + (c-a)^2 = a^2-2ab + b^2 + b^2-2bc + c^2 + c^2 -2ac + a^2$
$=(2(a^2+b^2+c^2 - ab + bc + ca) >=0$

or $a^2 + b^2 + c^2 >= ab + bc + ac \cdots(1)$

Now as a, b, c are sides of triangle we have

$a <= b + c$ or $a^2 <= ab + ac\cdots(2)$

similarly $b^2 <= ab + bc\cdots(3)$

and $c^2 <= bc + ac\cdots(4)$

adding (2) ,(3) , (4) we get $a^2 + b^2 + c^2 <= 2ab + 2bc + 2ca\cdots(2)$

Now we have $v = (a+b+c)^2 = (a^2 + b^2 + c^2 + 2(ab+bc+ca) <= (a^2+b^2+c^2) + 2(a^2+b^2+c^2$

or $ v <= 3(a^2+b^2+ c^2$

or $ v<=3u$

or $\frac{1}{3} < = \frac{u}{v}\cdots(5)$

Now for the 2nd part

$2u= u + u = (a^2+b^2+c^2) + (a^2 + b^2 + c^2 ) <= (a^2+b^2+c^2) + 2(ab+bc+ca)$ using (2)

or $2u <= (a+b+c)^2$ or $2u <= v\cdots(6)$

from (5) and (6) we get the result
 
Last edited:
Hi kaliprasad, thanks for participating! But I was wondering if you have somehow missed out the solution to the very last part of the question...
 
anemone said:
Hi kaliprasad, thanks for participating! But I was wondering if you have somehow missed out the solution to the very last part of the question...
There was a typo in 2nd last line it is corrected

I could not complete the part that fraction on the right cannot be replaced by a smaller number

other wise solution is complete
 
About the last part of the question...
If $a=b$ and $c=0$ then $u=2a^2$ and $v=4a^2$. So $\frac uv = \frac12.$ Of course, you cannot have a triangle with one side zero. But suppose you take an isosceles triangle with sides $a$, $a$ and $\varepsilon$. Then $$2u - v = 4a^2 + 2\varepsilon^2 - (2a + \varepsilon)^2 = \varepsilon(4a - \varepsilon),$$ which you can make as small as you like by taking $\varepsilon$ small enough. So $v$ can be made arbitrarily close to $2u$ and thus $\frac uv$ can be made arbitrarily close to $\frac12.$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K