MHB Prove function is a homomorphism

  • Thread starter Thread starter mathjam0990
  • Start date Start date
  • Tags Tags
    Function
mathjam0990
Messages
28
Reaction score
0
Let G be a group. Fix g ∈ G. Define a map φ : G → G by φ(x) = gxg^−1

Prove: φ is an isomorphism

What I Know: I already showed it is bijective. Now, I need help proving the homomorphism part. I know by definition for all a,b in G, f(ab)=f(a)f(b)

Question: How do I show this? For some reason I am getting confused and I don't think it's that difficult but I can't grasp it.

What I Have Done:
Let a=gag^-1 and b=gbg^-1. Then f(ab)=f(gag^-1 * gbg^-1) Is this even correct or did I start off totally wrong?

Thanks!
 
Physics news on Phys.org
Hi mathjam0990,

The trick here is to use the fact that for all $x\in G$, $x^{-1}x = e$. Let $a,b\in G$. Then

$$\varphi(a)\varphi(b) = (gag^{-1})(gbg^{-1}) = ga(g^{-1}g)bg^{-1} = gaebg^{-1} = gabg^{-1} = \varphi(ab).$$

Therefore, $\varphi$ is a homomorphism.
 
Euge, thank you so much! I never would have guessed that. Much appreciated!
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top