MHB Prove Identity: $\frac{\cos A - \sin A}{\cos A + \sin A}$

  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
The discussion centers on proving the identity $\frac{\cos A - \sin A}{\cos A + \sin A}$ and its equivalence to $\frac{1-\tan(A)}{1+\tan(A)}$. Participants explore the transformation of the left-hand side (LHS) using trigonometric identities, ultimately simplifying it to $\frac{\cos(A) - \sin(A)}{\cos(A) + \sin(A)}$. A suggestion is made to divide both the numerator and denominator by $\sin A$ to further manipulate the expression. The conversation emphasizes the importance of applying trigonometric identities to validate the identity.
Silver Bolt
Messages
8
Reaction score
0
$\frac{1-\tan\left({A}\right)}{1+\tan\left({A}\right)}=\frac{\cot\left({A}\right)-1}{\cot\left({A}\right)+1}$

$L..H.S=\frac{1-\frac{\sin\left({A}\right)}{\cos\left({A}\right)}}{1+\frac{\sin\left({A}\right)}{\cos\left({A}\right)}}$

$=\frac{\cos\left({A}\right)-\sin\left({A}\right)}{\cos\left({A}\right)+\sin\left({A}\right)}$

What should be done from here?
 
Mathematics news on Phys.org
Silver Bolt said:
$\frac{1-\tan\left({A}\right)}{1+\tan\left({A}\right)}=\frac{\cot\left({A}\right)-1}{\cot\left({A}\right)+1}$

$L..H.S=\frac{1-\frac{\sin\left({A}\right)}{\cos\left({A}\right)}}{1+\frac{\sin\left({A}\right)}{\cos\left({A}\right)}}$

$=\frac{\cos\left({A}\right)-\sin\left({A}\right)}{\cos\left({A}\right)+\sin\left({A}\right)}$

What should be done from here?

Hi Silver Bolt! ;)

Can we divide both the numerator and the denominator by $\sin A$?
 
$$\frac{1-\tan(A)}{1+\tan(A)}\cdot\frac{\cot(A)}{\cot(A)}$$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K