MHB Prove identity (sinx+cosx)/(secx+cscx)= sinxcosx

  • Thread starter Thread starter guinessvolley
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
To prove the identity (sinx + cosx)/(secx + cscx) = sinx cosx, start by rewriting the left-hand side in terms of sine and cosine functions. The expression becomes (sinx + cosx)/(1/cosx + 1/sinx). Next, combine the terms in the denominator to simplify the expression further. This approach leads to a clearer path for demonstrating the equality with the right-hand side. The proof ultimately hinges on manipulating the trigonometric identities effectively.
guinessvolley
Messages
1
Reaction score
0
prove this identity

(sinx+cosx)/(secx+cscx)= sinxcosx if you could list out the steps it would be appreciated
 
Mathematics news on Phys.org
Hello, and welcome to MHB! (Wave)

Since the RHS is in terms of the sine and cosine functions, the first thing I would do is write the LHS in terms of these functions only:

$$\frac{\sin(x)+\cos(x)}{\dfrac{1}{\cos(x)}+\dfrac{1}{\sin(x)}}$$

Now, combine terms in the denominator...what do you get?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top