MHB Prove: Inequality $9\gt \sqrt{a-1}+\sqrt{19-3a}+\sqrt{2a+9}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The inequality \(9 > \sqrt{a-1} + \sqrt{19-3a} + \sqrt{2a+9}\) is to be proven for all real values of \(a\). The discussion highlights an elegant method of proof shared by a participant named Euge. Participants express appreciation for the clarity and effectiveness of the proof method. The conversation emphasizes the importance of rigorous mathematical reasoning in establishing the inequality. Overall, the thread focuses on validating the inequality across the specified domain.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $9\gt \sqrt{a-1}+\sqrt{19-3a}+\sqrt{2a+9}$ for all real $a$.
 
Mathematics news on Phys.org
The inequality only makes sense when $1\le a\le 19/3$. By concavity of the square root function on $(0,\infty)$,

$$\sqrt{a-1}+\sqrt{19-3a}+\sqrt{2a+9} < 3\sqrt{\frac{(a-1)+(19-3a)+(2a+9)}{3}} = 3\sqrt{\frac{27}{3}} = 3\cdot 3 = 9.$$
 
Last edited:
Euge said:
The inequality only makes sense when $1\le a\le 19/3$. By concavity of the square root function on $(0,\infty)$,

$$\sqrt{a-1}+\sqrt{19-3a}+\sqrt{2a+9} < 3\sqrt{\frac{(a-1)+(19-3a)+(2a+9)}{3}} = 3\sqrt{\frac{27}{3}} = 3\cdot 3 = 9.$$

Thanks Euge for your elegant method of proving and thanks too for participating. :cool:
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
969
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K