MHB Prove Inequality for $0<x<\dfrac{\pi}{2}$: Math Challenge

Click For Summary
The discussion centers on proving the inequality $\dfrac{\pi^2-x^2}{\pi^2+x^2}>\left(\dfrac{\sin x}{x}\right)^2$ for the interval $0<x<\dfrac{\pi}{2}$. Participants share their solutions, with one user expressing satisfaction after solving the challenge. They reference the infinite product representation of $\frac{\sin x}{x}$ and derive inequalities to support their proof. The conversation highlights the use of mathematical properties to establish the inequality, with multiple users confirming similar methods. The challenge fosters engagement and collaboration among participants in the mathematical community.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For $0<x<\dfrac{\pi}{2}$, prove that $\dfrac{\pi^2-x^2}{\pi^2+x^2}>\left(\dfrac{\sin x}{x}\right)^2$.

I personally find this challenge very intriguing and I solved it, and feel good about it, hehehe...
 
Mathematics news on Phys.org
anemone said:
For $0<x<\dfrac{\pi}{2}$, prove that $\dfrac{\pi^2-x^2}{\pi^2+x^2}>\left(\dfrac{\sin x}{x}\right)^2$.

I personally find this challenge very intriguing and I solved it, and feel good about it, hehehe...

[sp]Rememering that is...

$\displaystyle \frac{\sin x}{x} = \prod_{n=1}^{\infty} (1 - \frac{x^{2}}{n^{2}\ \pi^{2}})\ (1)$

... You derive that...

$\displaystyle (\frac{\sin x}{x})^{2} < (1 - \frac{x^{2}}{\pi^{2}})^{2} < \frac{(1 - \frac{x^{2}}{\pi^{2}})}{(1 + \frac{x^{2}}{\pi^{2}})}\ (2)$

Tha last inequality is justified by tha fact that...

$\displaystyle (1 - \frac{x^{2}}{\pi^{2}})\ (1 + \frac{x^{2}}{\pi^{2}}) < 1\ (3)$[/sp]

Kind regards

$\chi$ $\sigma$
 
Last edited:
Hi chisigma! Thanks for your good solution! And I solved it using the similar method.:)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
971
  • · Replies 2 ·
Replies
2
Views
2K