MHB Prove Inequality: $\frac{1}{2}$ Bound w/ x,y,z>0

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The discussion revolves around proving the inequality $\frac{1}{(x+1)^2+y^2+1}+\frac{1}{(y+1)^2+z^2+1}+\frac{1}{(z+1)^2+x^2+1}\leq \frac{1}{2}$ under the conditions that x, y, z are positive and their product equals one. Participants highlight the symmetry of the expression, suggesting that the maximum occurs when x=y=z=1, yielding a sum of $\frac{1}{2}$. Some argue that while symmetry implies potential maxima, it does not conclusively prove that $\frac{1}{2}$ is indeed the maximum without further justification. The conversation emphasizes the need for a rigorous proof of the existence of maxima and the uniqueness of the solution. Ultimately, the discussion underscores the complexity of proving inequalities in symmetric expressions.
Albert1
Messages
1,221
Reaction score
0
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$
 
Mathematics news on Phys.org
Re: Prove an inequality

Albert said:
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$

It is quite evident the intrinsic symmetry of the expression, in the sense that x, y and z can be swapped and nothing change. Thqat suggests that it must be x=y=z=1 and in this case any memeber of the sum has value $\frac{1}{6}$ so that the sum is $\frac{1}{2}$ which is the maximum of the function with the condition x y z =1...

Kind regards

$\chi$ $\sigma$
 
Re: Prove an inequality

Albert said:
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}

+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$

for using $xyz=1$ and $AM\geq GM$

$\dfrac {z}{z}\times \dfrac{1}{(x+1)^2+y^2+1}\leq

\dfrac{z}{2(xz+z+1)}----(1)$

$\dfrac{xz}{xz}\times \dfrac{1}{(y+1)^2+z^2+1}\leq

\dfrac{xz}{2(xz+z+1)}----(2)$

$\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2(xz+z+1)}----(3)$

(1)+(2)+(3) the proof is done
 
Last edited:
Re: Prove an inequality

chisigma said:
It is quite evident the intrinsic symmetry of the expression, in the sense that x, y and z can be swapped and nothing change. Thqat suggests that it must be x=y=z=1 and in this case any memeber of the sum has value $\frac{1}{6}$ so that the sum is $\frac{1}{2}$ which is the maximum of the function with the condition x y z =1...

Kind regards

$\chi$ $\sigma$
Hello Chisigma,

Your reasoning is not clear to me.
I guess you have implicitly assumed, and not proved, that a maxima exists.
Moreover, even if the existence of a maxima is settled, there may me multiple maximas.
I don't see how the symmetry is sufficient to conclude that $1/2$ is the maximum even if its given that a global maxima exists.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top