Prove Inequality: $\frac{1}{2}$ Bound w/ x,y,z>0

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The forum discussion centers on proving the inequality $\frac{1}{(x+1)^2+y^2+1}+\frac{1}{(y+1)^2+z^2+1}+\frac{1}{(z+1)^2+x^2+1}\leq \frac{1}{2}$ under the conditions that $x, y, z > 0$ and $xyz = 1$. Participants highlight the symmetry of the expression, suggesting that the maximum occurs when $x = y = z = 1$, yielding a sum of $\frac{1}{2}$. The proof employs the Arithmetic Mean-Geometric Mean (AM-GM) inequality to establish bounds for each term in the sum, confirming the inequality holds true.

PREREQUISITES
  • Understanding of inequalities, specifically the AM-GM inequality
  • Familiarity with symmetric functions and their properties
  • Basic knowledge of algebraic manipulation and proof techniques
  • Concept of maxima and minima in mathematical functions
NEXT STEPS
  • Study the properties of symmetric inequalities in algebra
  • Learn more about the Arithmetic Mean-Geometric Mean (AM-GM) inequality and its applications
  • Explore methods for proving inequalities involving multiple variables
  • Investigate the conditions for the existence of maxima in constrained optimization problems
USEFUL FOR

Mathematicians, students studying inequalities, and anyone interested in advanced algebraic techniques for proving mathematical statements.

Albert1
Messages
1,221
Reaction score
0
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$
 
Mathematics news on Phys.org
Re: Prove an inequality

Albert said:
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$

It is quite evident the intrinsic symmetry of the expression, in the sense that x, y and z can be swapped and nothing change. Thqat suggests that it must be x=y=z=1 and in this case any memeber of the sum has value $\frac{1}{6}$ so that the sum is $\frac{1}{2}$ which is the maximum of the function with the condition x y z =1...

Kind regards

$\chi$ $\sigma$
 
Re: Prove an inequality

Albert said:
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}

+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$

for using $xyz=1$ and $AM\geq GM$

$\dfrac {z}{z}\times \dfrac{1}{(x+1)^2+y^2+1}\leq

\dfrac{z}{2(xz+z+1)}----(1)$

$\dfrac{xz}{xz}\times \dfrac{1}{(y+1)^2+z^2+1}\leq

\dfrac{xz}{2(xz+z+1)}----(2)$

$\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2(xz+z+1)}----(3)$

(1)+(2)+(3) the proof is done
 
Last edited:
Re: Prove an inequality

chisigma said:
It is quite evident the intrinsic symmetry of the expression, in the sense that x, y and z can be swapped and nothing change. Thqat suggests that it must be x=y=z=1 and in this case any memeber of the sum has value $\frac{1}{6}$ so that the sum is $\frac{1}{2}$ which is the maximum of the function with the condition x y z =1...

Kind regards

$\chi$ $\sigma$
Hello Chisigma,

Your reasoning is not clear to me.
I guess you have implicitly assumed, and not proved, that a maxima exists.
Moreover, even if the existence of a maxima is settled, there may me multiple maximas.
I don't see how the symmetry is sufficient to conclude that $1/2$ is the maximum even if its given that a global maxima exists.
 

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K