MHB Prove Inequality: $\frac{1}{2}$ Bound w/ x,y,z>0

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Albert1
Messages
1,221
Reaction score
0
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$
 
Mathematics news on Phys.org
Re: Prove an inequality

Albert said:
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$

It is quite evident the intrinsic symmetry of the expression, in the sense that x, y and z can be swapped and nothing change. Thqat suggests that it must be x=y=z=1 and in this case any memeber of the sum has value $\frac{1}{6}$ so that the sum is $\frac{1}{2}$ which is the maximum of the function with the condition x y z =1...

Kind regards

$\chi$ $\sigma$
 
Re: Prove an inequality

Albert said:
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}

+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$

for using $xyz=1$ and $AM\geq GM$

$\dfrac {z}{z}\times \dfrac{1}{(x+1)^2+y^2+1}\leq

\dfrac{z}{2(xz+z+1)}----(1)$

$\dfrac{xz}{xz}\times \dfrac{1}{(y+1)^2+z^2+1}\leq

\dfrac{xz}{2(xz+z+1)}----(2)$

$\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2(xz+z+1)}----(3)$

(1)+(2)+(3) the proof is done
 
Last edited:
Re: Prove an inequality

chisigma said:
It is quite evident the intrinsic symmetry of the expression, in the sense that x, y and z can be swapped and nothing change. Thqat suggests that it must be x=y=z=1 and in this case any memeber of the sum has value $\frac{1}{6}$ so that the sum is $\frac{1}{2}$ which is the maximum of the function with the condition x y z =1...

Kind regards

$\chi$ $\sigma$
Hello Chisigma,

Your reasoning is not clear to me.
I guess you have implicitly assumed, and not proved, that a maxima exists.
Moreover, even if the existence of a maxima is settled, there may me multiple maximas.
I don't see how the symmetry is sufficient to conclude that $1/2$ is the maximum even if its given that a global maxima exists.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top