MHB Prove Inequality: $\frac{1}{2}$ Bound w/ x,y,z>0

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion revolves around proving the inequality $\frac{1}{(x+1)^2+y^2+1}+\frac{1}{(y+1)^2+z^2+1}+\frac{1}{(z+1)^2+x^2+1}\leq \frac{1}{2}$ under the conditions that x, y, z are positive and their product equals one. Participants highlight the symmetry of the expression, suggesting that the maximum occurs when x=y=z=1, yielding a sum of $\frac{1}{2}$. Some argue that while symmetry implies potential maxima, it does not conclusively prove that $\frac{1}{2}$ is indeed the maximum without further justification. The conversation emphasizes the need for a rigorous proof of the existence of maxima and the uniqueness of the solution. Ultimately, the discussion underscores the complexity of proving inequalities in symmetric expressions.
Albert1
Messages
1,221
Reaction score
0
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$
 
Mathematics news on Phys.org
Re: Prove an inequality

Albert said:
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$

It is quite evident the intrinsic symmetry of the expression, in the sense that x, y and z can be swapped and nothing change. Thqat suggests that it must be x=y=z=1 and in this case any memeber of the sum has value $\frac{1}{6}$ so that the sum is $\frac{1}{2}$ which is the maximum of the function with the condition x y z =1...

Kind regards

$\chi$ $\sigma$
 
Re: Prove an inequality

Albert said:
x>0 ,y>0 ,z>0 and xyz=1 ,prove :

$ \dfrac{1}{(x+1)^2+y^2+1}+\dfrac{1}{(y+1)^2+z^2+1}

+\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2}$

for using $xyz=1$ and $AM\geq GM$

$\dfrac {z}{z}\times \dfrac{1}{(x+1)^2+y^2+1}\leq

\dfrac{z}{2(xz+z+1)}----(1)$

$\dfrac{xz}{xz}\times \dfrac{1}{(y+1)^2+z^2+1}\leq

\dfrac{xz}{2(xz+z+1)}----(2)$

$\dfrac{1}{(z+1)^2+x^2+1}\leq \dfrac{1}{2(xz+z+1)}----(3)$

(1)+(2)+(3) the proof is done
 
Last edited:
Re: Prove an inequality

chisigma said:
It is quite evident the intrinsic symmetry of the expression, in the sense that x, y and z can be swapped and nothing change. Thqat suggests that it must be x=y=z=1 and in this case any memeber of the sum has value $\frac{1}{6}$ so that the sum is $\frac{1}{2}$ which is the maximum of the function with the condition x y z =1...

Kind regards

$\chi$ $\sigma$
Hello Chisigma,

Your reasoning is not clear to me.
I guess you have implicitly assumed, and not proved, that a maxima exists.
Moreover, even if the existence of a maxima is settled, there may me multiple maximas.
I don't see how the symmetry is sufficient to conclude that $1/2$ is the maximum even if its given that a global maxima exists.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K