MHB Prove Inequality: $\sqrt{ab}+\sqrt{cd}\le \sqrt{(a+d)(b+c)}$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that for positive reals $a,\,b,\,c,\,d$, $\sqrt{ab}+\sqrt{cd}\le \sqrt{(a+d)(b+c)}$.
 
Mathematics news on Phys.org
We have:

$$\sqrt{ab} + \sqrt{cd} \leq \sqrt{(a+d)(b+c)} \\\\
\left ( \sqrt{ab} + \sqrt{cd}\right )^2 \leq \left ( \sqrt{ab + ac + bd + cd} \right )^2
\\\\ab + cd + 2\sqrt{ab}\sqrt{cd}\leq ab + ac + bd + cd
\\\\ac + bd - 2\sqrt{ab}\sqrt{cd}\geq 0
\\\\\left ( \sqrt{ac} \right )^2 + \left ( \sqrt{bd} \right )^2-2\sqrt{ac}\sqrt{bd}\geq 0
\\\\\left ( \sqrt{ac}-\sqrt{bd} \right )^2 \geq 0. $$

Thus the inequality holds.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
866
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K