MHB Prove Lagrange Property w/ Algebra - A Hint for You!

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Lagrange Property
Click For Summary
The discussion focuses on proving the Lagrange property using algebraic methods. Participants suggest utilizing inner products and polarization identities to facilitate the proof. The main equation under consideration relates the square of the sum of products of two sets of real numbers to the sums of their squares and a specific summation involving differences of products. A detailed algebraic manipulation leads to the conclusion that the sum of squares can be expressed in terms of the inner products. The conversation emphasizes the importance of careful algebraic expansion and manipulation to arrive at the desired result.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

With use of algebra I want to prove the Lagrange property:For any real numbers $x_1, \dots, x_n$ and $y_1, \dots, y_n$, $$\left( \sum_{i=1}^n x_i y_i\right)^2=\left(\sum_{i=1}^n x_i^2 \right)\left(\sum_{i=1}^n y_i^2 \right)- \sum_{i<j} (x_i y_j-x_j y_i)^2$$

Could you give me a hint how we could show the above property?
 
Physics news on Phys.org
Hint: try using inner products (you may find the polarization identities useful).
 
Deveno said:
Hint: try using inner products (you may find the polarization identities useful).

We have that $\left( \sum_{i=1}^n x_i y_i \right)^2=(x \cdot y)^2$ and $\sum_{i=1}^n x_i^2=||x||^2,\sum_{i=1}^n y_i^2=||y||^2 $, right?

How can we write the other sum, which is not till n? (Thinking)
 
$ \begin{aligned} & \begin{aligned} ~~~~~~~~~~ \mathcal{S}: &= \sum_{1 \le i<j \le n} (x_i y_j-x_j y_i)^2 \\& =\sum_{1 \le i \le j \le n} (x_i y_j-x_j y_i)^2 -\sum_{1 \le j \le n} (x_jy_j-x_jy_j)^2 \\& =\sum_{1 \le i \le j \le n}x_i^2 y_j^2-2 \sum_{1 \le i \le j \le n}x_ix_jy_i y_j+\sum_{1 \le i \le j \le n}x_j^2 y_i^2 \\& =\sum_{1 \le j \le n}\sum_{1 \le i \le j} x_i^2 y_j^2-2 \sum_{1 \le j \le n}\sum_{1 \le i \le j}x_ix_jy_i y_j+\sum_{1 \le j \le n}\sum_{1 \le i \le j}x_j^2 y_i^2 \\& = \sum_{1 \le i \le n}\sum_{i \le j \le n} x_i^2 y_j^2-2 \sum_{1 \le i \le n}\sum_{i \le j \le n}x_ix_jy_i y_j+\sum_{1 \le i \le n}\sum_{i \le j \le n}x_j^2 y_i^2 \\& = \sum_{1 \le i \le n}\sum_{1 \le j \le n} x_i^2 y_j^2-2 \sum_{1 \le i \le n}\sum_{1 \le j \le n}x_ix_jy_i y_j+\sum_{1 \le i \le n}\sum_{1 \le j \le n}x_j^2 y_i^2 \\& - \sum_{1 \le i \le n}\sum_{1 \le j \le i-1} x_i^2 y_j^2+2 \sum_{1 \le i \le n}\sum_{1 \le j \le i-1}x_ix_jy_i y_j-\sum_{1 \le i \le n}\sum_{1 \le j \le i-1}x_j^2 y_i^2 \\& = \sum_{1 \le i \le n}x_i^2 \sum_{1 \le j \le n}y_j^2-2 \sum_{1 \le i \le n}x_iy_i \sum_{1 \le j \le n}x_jy_j+\sum_{1 \le i \le n} y_i^2\sum_{1 \le j \le n}x_j^2 -\sum_{1 \le j <i \le n} (x_i y_j-x_j y_i)^2 \\& =\bigg(\sum_{1 \le i \le n}x_i^2\bigg)\bigg(\sum_{1 \le i \le n}y_i^2\bigg)-2 \bigg(\sum_{1 \le i \le n}x_iy_i \bigg)^2+\bigg(\sum_{1 \le i \le n} y_i^2\bigg)\bigg(\sum_{1 \le i \le n}x_i^2\bigg) -\mathcal{S} \\& =2\bigg(\sum_{1 \le i \le n}x_i^2\bigg)\bigg(\sum_{1 \le i \le n}y_i^2\bigg)-2 \bigg(\sum_{1 \le i \le n}x_iy_i \bigg)^2 -\mathcal{S} \end{aligned} \\& \implies 2 \mathcal{S} = 2\bigg(\sum_{1 \le i \le n}x_i^2\bigg)\bigg(\sum_{1 \le i \le n}y_i^2\bigg)-2 \bigg(\sum_{1 \le i \le n}x_iy_i \bigg)^2 \\& \implies ~~\mathcal{S} =\bigg(\sum_{1 \le i \le n}x_i^2\bigg)\bigg(\sum_{1 \le i \le n}y_i^2\bigg)- \bigg(\sum_{1 \le i \le n}x_iy_i \bigg)^2. \end{aligned} $
 
Last edited:
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
32
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
6
Views
2K