Prove $\lim_{{n}\to{\infty}}(3^n+4^n)^{1/n}=4$

  • Context: MHB 
  • Thread starter Thread starter Dethrone
  • Start date Start date
  • Tags Tags
    Fun Limit
Click For Summary
SUMMARY

The limit of the expression \((3^n + 4^n)^{1/n}\) as \(n\) approaches infinity is conclusively proven to be 4. The solution involves rewriting the expression as \((3^n + 4^n)^{1/n} = 4 \{1 + (3/4)^n\}^{1/n}\). As \(n\) approaches infinity, the term \((3/4)^n\) approaches 0, leading to the limit of the entire expression being 4. This conclusion is supported by the mathematical properties of limits and exponential functions.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with exponential functions
  • Knowledge of asymptotic behavior of sequences
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of limits in calculus
  • Learn about exponential growth and decay
  • Explore asymptotic analysis techniques
  • Investigate the application of L'Hôpital's Rule in limit evaluation
USEFUL FOR

Students of calculus, mathematicians, and anyone interested in understanding limits and exponential functions in mathematical analysis.

Dethrone
Messages
716
Reaction score
0
Prove that $\lim_{{n}\to{\infty}}(3^n+4^n)^{1/n}=4$
 
Physics news on Phys.org
Since $4^n < 3^n + 4^n < 2 \cdot 4^n$ for all $n$, $4 < (3^n + 4^n)^{1/n} < 2^{1/n}\cdot 4$ for all $n$. Since $2^{1/n}\cdot 4 \to 4$ as $n\to \infty$, by the squeeze theorem, $\lim_{n\to \infty}(3^n + 4^n)^{1/n} = 4$.
 
Rido12 said:
Prove that $\lim_{{n}\to{\infty}}(3^n+4^n)^{1/n}=4$

My solution:

Let:

$$L=\lim_{n\to\infty}\left[\left(3^n+4^n\right)^{\frac{1}{n}}\right]$$

Take the natural log of both sides, and apply the properties of one-to-one functions and logs

$$\ln(L)=\lim_{n\to\infty}\left[\frac{\ln\left(3^n+4^n\right)}{n}\right]$$

Apply L'Hôpital's Rule:

$$\ln(L)=\lim_{n\to\infty}\left[\frac{\ln(3)3^n+\ln(4)4^n}{3^n+4^n}\right]$$

Divide all terms by $4^n$:

$$\ln(L)=\lim_{n\to\infty}\left[\frac{\ln(3)\left(\dfrac{3}{4}\right)^n+\ln(4)}{\left(\dfrac{3}{4}\right)^n+1}\right]=\ln(4)$$

Hence:

$$L=4$$
 
Rido12 said:
Prove that $\lim_{{n}\to{\infty}}(3^n+4^n)^{1/n}=4$

[sp]Is...

$\displaystyle (3^{n} + 4^{n})^{\frac{1}{n}} = 4\ \{1 + (\frac{3}{4})^{n}\}^{\frac{1}{n}}$

... and clearly...

$\displaystyle \lim_{n \rightarrow \infty} \{1 + (\frac{3}{4})^{n}\}^{\frac{1}{n}} = 1$[/sp]

Kind regards

$\chi$ $\sigma$
 
Thanks everyone for participating! You are all correct. (Cool)
My solution is the same as Euge's.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
985
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
5
Views
2K