MHB Prove: One of $a, b$ or $c$ is Sum of Other Two

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
AI Thread Summary
For three real numbers a, b, and c, the conditions |a-b|≥|c|, |b-c|≥|a|, and |c-a|≥|b| imply that one of the numbers must be the sum of the other two. By squaring the inequalities, it can be shown that the expressions (a-b+c)(a-b-c), (b-c+a)(b-c-a), and (c-a+b)(c-a-b) yield non-negative products. The multiplication of these inequalities leads to a conclusion that holds true if any of the equations a+c=b, b+c=a, or a+b=c are satisfied. Therefore, the proof demonstrates that one of the numbers is indeed the sum of the other two.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $a, b$ and $c$ are three real numbers such that $|a-b|\ge|c|$, $|b-c|\ge|a|$ and $|c-a|\ge|b|$, then prove that one of $a, b$ or $c$ is the sum of the other two.
 
Mathematics news on Phys.org
Re: Prove a+b=c

My solution

First off, if two are equal then the third is zero and we're done. So we will assume that none are equal. We will assume that $a \le b \le c$ (without loss of generality). Thus, from the three inequalities given we have

$\begin{eqnarray}
a - b \;& \; \le\; & \;c \;& \;\le b-a\\
b - c\; & \;\le\; &\;a &\; \le c-b\\
a - c \;& \;\le\; &\;b & \;\le c-a
\end{eqnarray}.$

From the right hand side of the first inequality we have $a+c \le b$ and the left hand side of the second inequality we have $b \le a + c$ giving the $b=a+c$
 
Re: Prove a+b=c

anemone said:
If $a, b$ and $c$ are three real numbers such that $|a-b|\ge|c|$, $|b-c|\ge|a|$ and $|c-a|\ge|b|$, then prove that one of $a, b$ or $c$ is the sum of the other two.

Squaring both sides of the inequality of $|a-b|\ge|c|$, we get

$(a-b)^2\ge c^2$

$(a-b)^2-c^2\ge 0$

$(a-b+c)(a-b-c)\ge 0$---(1)

Similarly we have

$(b-c+a)(b-c-a)\ge 0$
$-(b-c+a)(-b+c+a)\ge 0 $
$\rightarrow -(a+b-c)(a-b+c)\ge 0$---(2)

and $(c-a+b)(c-a-b)\ge 0$
$(-c+a-b)(-c+a+b)\ge 0$
$\rightarrow (a-b-c)(a+b-c)\ge 0$---(3)

Multiply these three inequalities yields

$(a-b+c)(a-b-c)(-(a+b-c)(a-b+c))(a-b-c)(a+b-c) \ge 0$

$-(a-b+c)^2(a-b-c)^2(a+b-c)^2 \ge 0$

Apparently, this inequality holds true if either $a-b+c=0 (a+c=b)$ or $a-b-c=0 (b+c=a)$ or $a+b-c=0 (a+b=c)$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
1K
Replies
1
Views
861
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
9
Views
2K
Back
Top