Prove or disprove that there is a rational bijective function f : R to (0; 1)

  • Thread starter Thread starter hangainlover
  • Start date Start date
  • Tags Tags
    Function Rational
Click For Summary
SUMMARY

This discussion confirms that a rational bijective function from the real numbers R to the interval (0, 1) cannot exist. The participants establish that the denominator of such a function must be a polynomial of even degree to ensure continuity across R, while the numerator must be of odd degree to achieve the necessary asymptotic behavior. However, this creates a contradiction regarding injectivity, as the function cannot be both injective and restricted to (0, 1) under these conditions. Key points include the necessity for the denominator to avoid real roots and the implications of polynomial degrees on the function's behavior.

PREREQUISITES
  • Understanding of rational functions and their properties
  • Knowledge of polynomial degrees and their implications on function behavior
  • Familiarity with concepts of injectivity and continuity in functions
  • Basic calculus, including limits and asymptotic analysis
NEXT STEPS
  • Explore the properties of rational functions and their injectivity
  • Study polynomial functions, focusing on even and odd degrees
  • Learn about asymptotic behavior and limits in calculus
  • Investigate bijective functions and their characteristics in mathematical analysis
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in the properties of functions and rational mappings.

hangainlover
Messages
77
Reaction score
0

Homework Statement



Prove or disprove that there is a rational bijective function f : R to (0; 1)

Homework Equations



i found a bijective map from (0,1) to R (y=(2x-1)/(2x^2-2x)



The Attempt at a Solution



Im just stuck and i was thinking since it has to be a rational function, denominaotor should be defined on all R ... so nothing funky in the denominator..
Somehow i have to play with the numerator to limit the map to (0,1) which i think is impossible...
 
Physics news on Phys.org
I don't really know the answer to this, but if you consider a function such as:

f \left( x \right) = \frac{x^2}{x^2+1}

The range is \left[ 0, 1 \right), but it is not bijective.
 
A rational function is the ratio of two polynomials. You observed if there's anything "funky" in the denominator, then certainly R won't get mapped to (0,1). Now just think about what "funky" really means.. Remember, the denominator is a polynomial.

[STRIKE]Edit: Sorry--that's not really helpful.[/STRIKE] Actually, I think it can be made to work. One thing the denominator can't be is a polynomial of odd degree (why?). Keeping this in mind, consider the derivative of the rational function, and try to think about turning points. You will also need to think about the degree of the numerator.

Edit2: There's a much easier approach: consider limits as ##x\to\pm\infty##.
 
Last edited:
What i mean by funky is that the denominator should be defined on the enitre R.(for example, x-2 won't be defined at x=0, we don't want the denominator to have any roots in R)
The function that I am trying to find has to be continuous so that as x gets sent to infinity, it has to go to either 0 or 1

I don't get why you said the denominator cannot be of odd degree. odd degree polynomial means one end is up and the other end is down.
 
A polynomial of odd degree always has a real root, and the denominator can't have a root if we want the rational function to be defined on all of R.
 
i have plugged in some random rational functions with the denominator beign a polynomial of degree 2. I can get it to be restricted between 0 and 1 but it is not injective.
I don't think you can get it to be injective.
In order for one end to go up (approaching 1) and for the other to go near 0, the numerator has to be odd. But then f will be 0 as x goes to -,+ infinity
 
Sounds like you've pretty much got it. Care to summarize your argument in one post, so we can make sure there are no gaps?
 
The reason why i think it is impossible to find a bijective function going from R to (0,1) is
1, the denominator has to be a polynomial of even
2, one end of the function has to approach 1 asymptotically and the other end has to approach 0 and you can only achieve something like this and this means the numerator has to be a polynomial of odd
3, in order to restrict it in the interval (0,1) , the degree of my numerator cannot exceed the degree of the numerator
4, if it is the same degree (even), then it will both approach positive 1 and will not be injective
5, if the degree of my numerator is less than that of the denominator, it will approach 0 both ways and will not be injective.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
1K
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K