Prove (p+r)(p+s)(p+t)(p+u)=(q+r)(q+s)(q+t)(q+u)

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around proving the equality \((p+r)(p+s)(p+t)(p+u)=(q+r)(q+s)(q+t)(q+u)\) under the conditions that \(p+q+r+s+t+u=0\) and \(p^3+q^3+r^3+s^3+t^3+u^3=0\). The focus is on mathematical reasoning and exploration of polynomial identities.

Discussion Character

  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • Post 1 presents the problem statement and the conditions necessary for the proof.
  • Post 2 elaborates on the proof by defining a polynomial function \(f(x)\) and using Newton's identities to relate the coefficients to the given conditions. It derives a relationship that leads to the conclusion that \(f(p) = f(q)\).
  • Post 3 offers a positive acknowledgment of the previous post, indicating appreciation for the explanation provided.
  • Post 4 appears to introduce an alternative solution or perspective, but details are not provided.

Areas of Agreement / Disagreement

There is no explicit consensus reached in the discussion. While one participant provides a detailed proof, another participant acknowledges it without further elaboration, and an alternative solution is hinted at but not discussed.

Contextual Notes

The discussion includes assumptions based on the conditions provided, and the derivation relies on specific mathematical identities. The completeness of the proof may depend on further exploration of the alternative solution mentioned.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $p+q+r+s+t+u=0$ and $p^3+q^3+r^3+s^3+t^3+u^3=0$, prove that

$(p+r)(p+s)(p+t)(p+u)=(q+r)(q+s)(q+t)(q+u)$.
 
Mathematics news on Phys.org
anemone said:
If $p+q+r+s+t+u=0$ and $p^3+q^3+r^3+s^3+t^3+u^3=0$, prove that

$(p+r)(p+s)(p+t)(p+u)=(q+r)(q+s)(q+t)(q+u)$.
[sp]
Let $f(x) = (x+r)(x+s)(x+t)(x+u) = x^4 + ax^3 + bx^2 + cx + d$, where $a = r+s+t+u$, $b = rs+rt+ru+st+su+tu$, $c = stu + rtu + rsu + rst$ and $d = rstu$. By one of Newton's identities, $r^3+s^3+t^3+u^3 = a^3 - 3ab + 3c$.

So we are told that $p+q = -a$, and $p^3+q^3 = -a^3 + 3ab - 3c$. It follows that $-a^3 = (p+q)^3 = p^3 + q^3 + 3pq(p+q) = -a^3 + 3ab - 3c - 3apq$, from which $$ab - c - apq = 0.\quad (*)$$

We want to show that $f(p) = f(q)$. In fact, $$\begin{aligned} f(p) - f(q) &= p^4 - q^4 + a(p^3 - q^3) + b(p^2-q^2) + c(p-q) \\ &= (p-q)\bigl( p^3 + p^2q + pq^2 + q^3 + a(p^2 + pq + q^2) + b(p+q) + c \bigr) \\ &= (p-q)\bigl( (p+q)^3 - 2pq(p+q) + a((p+q)^2 - pq) + b(p+q) + c \bigr) \\ &= (p-q)\bigl( -a^3 + 2apq + a(a^2 - pq) -ba + c \bigr) \\ &= (p-q)( apq - ab + c) = 0, \quad \text{by }(*). \end{aligned}$$[/sp]
 
Very well done, Opalg, and welcome back home! :)
 
Solution of other:

Let $a_k$ be the sum of the products of the four letters $r,\,s,\,t,\,u$, taken $k$ at a time.

Then $a_1=r+s+t+u=-(p+q)$.

Also,

$\begin{align*}a_1(a_1^2-3a_2)&=(r^3+s^3+t^3+u^3)-3a_3\\&=-(p^3+q^3)-3a_3\end{align*}$

Therefore,

$\begin{align*}a_3&=\dfrac{(p+q)^3-(p^3+q^3)}{3}-a_2(p+q)\\&=(p+q)(pq-a_2)\end{align*}$

Hence,

$\begin{align*}(p+r)(p+s)(p+t)(p+u)&=(q+r)(q+s)(q+t)(q+u)\\&=p^4-p^3(p+q)+p^2a_2+p(p+q)(pq-a_2)+a_4\\&=p^2q^2-pqa_2+a_4\\&=(q+r)(q+s)(q+t)(q+u)\end{align*}$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K