MHB Prove (p+r)(p+s)(p+t)(p+u)=(q+r)(q+s)(q+t)(q+u)

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion focuses on proving the equality \((p+r)(p+s)(p+t)(p+u)=(q+r)(q+s)(q+t)(q+u)\) under the conditions \(p+q+r+s+t+u=0\) and \(p^3+q^3+r^3+s^3+t^3+u^3=0\). By defining the polynomial \(f(x) = (x+r)(x+s)(x+t)(x+u)\) and applying Newton's identities, the relationship between the sums of cubes leads to the conclusion that \(ab - c - apq = 0\). The proof shows that \(f(p) - f(q) = 0\), indicating that \(f(p) = f(q)\). Thus, the equality is successfully established, confirming the original statement.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $p+q+r+s+t+u=0$ and $p^3+q^3+r^3+s^3+t^3+u^3=0$, prove that

$(p+r)(p+s)(p+t)(p+u)=(q+r)(q+s)(q+t)(q+u)$.
 
Mathematics news on Phys.org
anemone said:
If $p+q+r+s+t+u=0$ and $p^3+q^3+r^3+s^3+t^3+u^3=0$, prove that

$(p+r)(p+s)(p+t)(p+u)=(q+r)(q+s)(q+t)(q+u)$.
[sp]
Let $f(x) = (x+r)(x+s)(x+t)(x+u) = x^4 + ax^3 + bx^2 + cx + d$, where $a = r+s+t+u$, $b = rs+rt+ru+st+su+tu$, $c = stu + rtu + rsu + rst$ and $d = rstu$. By one of Newton's identities, $r^3+s^3+t^3+u^3 = a^3 - 3ab + 3c$.

So we are told that $p+q = -a$, and $p^3+q^3 = -a^3 + 3ab - 3c$. It follows that $-a^3 = (p+q)^3 = p^3 + q^3 + 3pq(p+q) = -a^3 + 3ab - 3c - 3apq$, from which $$ab - c - apq = 0.\quad (*)$$

We want to show that $f(p) = f(q)$. In fact, $$\begin{aligned} f(p) - f(q) &= p^4 - q^4 + a(p^3 - q^3) + b(p^2-q^2) + c(p-q) \\ &= (p-q)\bigl( p^3 + p^2q + pq^2 + q^3 + a(p^2 + pq + q^2) + b(p+q) + c \bigr) \\ &= (p-q)\bigl( (p+q)^3 - 2pq(p+q) + a((p+q)^2 - pq) + b(p+q) + c \bigr) \\ &= (p-q)\bigl( -a^3 + 2apq + a(a^2 - pq) -ba + c \bigr) \\ &= (p-q)( apq - ab + c) = 0, \quad \text{by }(*). \end{aligned}$$[/sp]
 
Very well done, Opalg, and welcome back home! :)
 
Solution of other:

Let $a_k$ be the sum of the products of the four letters $r,\,s,\,t,\,u$, taken $k$ at a time.

Then $a_1=r+s+t+u=-(p+q)$.

Also,

$\begin{align*}a_1(a_1^2-3a_2)&=(r^3+s^3+t^3+u^3)-3a_3\\&=-(p^3+q^3)-3a_3\end{align*}$

Therefore,

$\begin{align*}a_3&=\dfrac{(p+q)^3-(p^3+q^3)}{3}-a_2(p+q)\\&=(p+q)(pq-a_2)\end{align*}$

Hence,

$\begin{align*}(p+r)(p+s)(p+t)(p+u)&=(q+r)(q+s)(q+t)(q+u)\\&=p^4-p^3(p+q)+p^2a_2+p(p+q)(pq-a_2)+a_4\\&=p^2q^2-pqa_2+a_4\\&=(q+r)(q+s)(q+t)(q+u)\end{align*}$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K