Prove $\prod\limits_{i=1}^{n}\frac{\sin a_i}{a_i}\le(\frac{\sin a}{a})^n$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Product
Click For Summary
SUMMARY

The inequality $\prod\limits_{i=1}^{n}\frac{\sin a_i}{a_i}\le(\frac{\sin a}{a})^n$ holds for $0 PREREQUISITES

  • Understanding of Jensen's inequality
  • Knowledge of the properties of the sine function
  • Familiarity with the concept of concavity
  • Basic principles of inequalities in mathematical analysis
NEXT STEPS
  • Study the application of Jensen's inequality in various mathematical contexts
  • Explore the properties of the sine function, particularly its concavity
  • Investigate other inequalities involving products of functions
  • Learn about the implications of averaging in mathematical inequalities
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in inequalities and their applications in mathematical proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $0<a_i<\pi$, $i=1,\,\cdots,\,n$ and let $a=\dfrac{a_1+\cdots+a_n}{n}$. Prove that $\displaystyle \prod_{i=1}^{n} \left(\dfrac{\sin a_i}{a_i}\right)\le \left(\dfrac{\sin a}{a}\right)^n$.
 
Physics news on Phys.org
anemone said:
Let $0<a_i<\pi$, $i=1,\,\cdots,\,n$ and let $a=\dfrac{a_1+\cdots+a_n}{n}$. Prove that $\displaystyle \prod_{i=1}^{n} \left(\dfrac{\sin a_i}{a_i}\right)\le \left(\dfrac{\sin a}{a}\right)^n$.

Since the natural log function is concave on $(0, \infty)$ and the sine function is positive and concave on $(0, \pi)$, the composition $x \mapsto \ln \sin x$ is concave on $(0, \infty)$. Therefore

$\displaystyle \frac{1}{n}\sum_{i = 1}^n \ln \sin a_i \le \ln \sin a$.

Subtracting $a$ from both sides and using the formula $a = \frac{a_1 + \cdots + a_n}{n}$ results in

$\displaystyle \frac{1}{n} \sum_{i = 1}^n (\ln \sin a_i - a_i) \le \ln \sin a - a$,

or

$\displaystyle \frac{1}{n} \sum_{i = 1}^n \ln \frac{\sin a_i}{a_i} \le \ln \frac{\sin a}{a}$.

Multiplying by $n$ and exponentiating yields

$\displaystyle \prod_{i = 1}^n \frac{\sin a_i}{a_i} \le \left(\frac{\sin a}{a}\right)^n$.
 
Euge said:
Since the natural log function is concave on $(0, \infty)$ and the sine function is positive and concave on $(0, \pi)$, the composition $x \mapsto \ln \sin x$ is concave on $(0, \infty)$. Therefore

$\displaystyle \frac{1}{n}\sum_{i = 1}^n \ln \sin a_i \le \ln \sin a$.

Subtracting $a$ from both sides and using the formula $a = \frac{a_1 + \cdots + a_n}{n}$ results in

$\displaystyle \frac{1}{n} \sum_{i = 1}^n (\ln \sin a_i - a_i) \le \ln \sin a - a$,

or

$\displaystyle \frac{1}{n} \sum_{i = 1}^n \ln \frac{\sin a_i}{a_i} \le \ln \frac{\sin a}{a}$.

Multiplying by $n$ and exponentiating yields

$\displaystyle \prod_{i = 1}^n \frac{\sin a_i}{a_i} \le \left(\frac{\sin a}{a}\right)^n$.

Well done, Euge! And thanks for participating!:)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K