MHB Prove q((p^2)-1)=2: Struggling to Crack the Math Problem

  • Thread starter Thread starter Wild ownz al
  • Start date Start date
AI Thread Summary
To prove that q((p^2)-1) = 2 given SinA + CosA = p and TanA + CotA = q, start by squaring the first equation to derive p^2 - 1 = 2 SinA CosA. From the second equation, express q as 1/(SinA CosA). By substituting this expression for q into the equation derived from the first condition, you can multiply the two results to arrive at the desired proof. This method effectively demonstrates the relationship between p and q through trigonometric identities. The proof is complete once the calculations are verified.
Wild ownz al
Messages
30
Reaction score
0
If SinA + CosA = p and TanA + CotA = q, prove that q((p^2)-1) = 2. (Spent hours STILL could not figure out!)
 
Mathematics news on Phys.org
Wild ownz al said:
If SinA + CosA = p and TanA + CotA = q, prove that q((p^2)-1) = 2. (Spent hours STILL could not figure out!)

Let us start from the LHS

$\sin\, A + \cos\,A = p$
square both sides
$(\sin\, A + \cos\,A)^2 = p^2$

or $\sin^2 A + 2 \sin\, A \cos\, A + cos^2 A = p^2$
or $1 +2 \sin\, A \cos\, A = p^2$
or $p^2 - 1 = 2 \sin\, A \cos\, A\cdots(1)$
from $2^{nd}$ condition
$\frac{\sin\, A}{\cos\, A} + \frac{\cos \, A}{\sin \, A} = q$
or $\frac{\sin^2 A+\cos^2 A}{\cos\, A\sin \, A} = q$
or $\frac{1}{\cos\, A\sin \, A} = q\cdots(2)$

multiplying (1) with (2) you get the result
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top