MHB Prove q((p^2)-1)=2: Struggling to Crack the Math Problem

  • Thread starter Thread starter Wild ownz al
  • Start date Start date
AI Thread Summary
To prove that q((p^2)-1) = 2 given SinA + CosA = p and TanA + CotA = q, start by squaring the first equation to derive p^2 - 1 = 2 SinA CosA. From the second equation, express q as 1/(SinA CosA). By substituting this expression for q into the equation derived from the first condition, you can multiply the two results to arrive at the desired proof. This method effectively demonstrates the relationship between p and q through trigonometric identities. The proof is complete once the calculations are verified.
Wild ownz al
Messages
30
Reaction score
0
If SinA + CosA = p and TanA + CotA = q, prove that q((p^2)-1) = 2. (Spent hours STILL could not figure out!)
 
Mathematics news on Phys.org
Wild ownz al said:
If SinA + CosA = p and TanA + CotA = q, prove that q((p^2)-1) = 2. (Spent hours STILL could not figure out!)

Let us start from the LHS

$\sin\, A + \cos\,A = p$
square both sides
$(\sin\, A + \cos\,A)^2 = p^2$

or $\sin^2 A + 2 \sin\, A \cos\, A + cos^2 A = p^2$
or $1 +2 \sin\, A \cos\, A = p^2$
or $p^2 - 1 = 2 \sin\, A \cos\, A\cdots(1)$
from $2^{nd}$ condition
$\frac{\sin\, A}{\cos\, A} + \frac{\cos \, A}{\sin \, A} = q$
or $\frac{\sin^2 A+\cos^2 A}{\cos\, A\sin \, A} = q$
or $\frac{1}{\cos\, A\sin \, A} = q\cdots(2)$

multiplying (1) with (2) you get the result
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top