MHB Prove q((p^2)-1)=2: Struggling to Crack the Math Problem

  • Thread starter Thread starter Wild ownz al
  • Start date Start date
Click For Summary
To prove that q((p^2)-1) = 2 given SinA + CosA = p and TanA + CotA = q, start by squaring the first equation to derive p^2 - 1 = 2 SinA CosA. From the second equation, express q as 1/(SinA CosA). By substituting this expression for q into the equation derived from the first condition, you can multiply the two results to arrive at the desired proof. This method effectively demonstrates the relationship between p and q through trigonometric identities. The proof is complete once the calculations are verified.
Wild ownz al
Messages
30
Reaction score
0
If SinA + CosA = p and TanA + CotA = q, prove that q((p^2)-1) = 2. (Spent hours STILL could not figure out!)
 
Mathematics news on Phys.org
Wild ownz al said:
If SinA + CosA = p and TanA + CotA = q, prove that q((p^2)-1) = 2. (Spent hours STILL could not figure out!)

Let us start from the LHS

$\sin\, A + \cos\,A = p$
square both sides
$(\sin\, A + \cos\,A)^2 = p^2$

or $\sin^2 A + 2 \sin\, A \cos\, A + cos^2 A = p^2$
or $1 +2 \sin\, A \cos\, A = p^2$
or $p^2 - 1 = 2 \sin\, A \cos\, A\cdots(1)$
from $2^{nd}$ condition
$\frac{\sin\, A}{\cos\, A} + \frac{\cos \, A}{\sin \, A} = q$
or $\frac{\sin^2 A+\cos^2 A}{\cos\, A\sin \, A} = q$
or $\frac{1}{\cos\, A\sin \, A} = q\cdots(2)$

multiplying (1) with (2) you get the result
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
48
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K