MHB Prove $R\ncong R\left[x\right]$ for Noetherian Ring

  • Thread starter Thread starter chuyenvien94
  • Start date Start date
  • Tags Tags
    Ring
chuyenvien94
Messages
1
Reaction score
0
Let $R$ be a commutative Noetherian ring with identity. Prove that $R\ncong R\left[x\right]$ and give an example that the result is not true if $R$ is not Noetherian.
 
Physics news on Phys.org
Can you show what you have tried so our helpers know where you are stuck and/or what mistake(s) you may be making?
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top