MHB Prove Similar Triangles: $\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangles
Click For Summary
Two triangles with sides a, b, c and a1, b1, c1 are proven to be similar if and only if the equation √(aa1) + √(bb1) + √(cc1) equals √((a+b+c)(a1+b1+c1)). This condition establishes a direct relationship between the sides of the triangles, indicating similarity. The proof involves manipulating the equation to demonstrate the equivalence of the two triangle configurations. The discussion emphasizes the importance of this relationship in geometry. Understanding this concept is crucial for further studies in triangle properties and similarity.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that two triangles with sides $a,\,b,\,c$ and $a_1,\,b_1,\,c_1$ are similar if and only if $\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1}=\sqrt{(a+b+c)(a_1+b_1+c_1)}$.
 
Mathematics news on Phys.org
anemone said:
Prove that two triangles with sides $a,\,b,\,c$ and $a_1,\,b_1,\,c_1$ are similar if and only if $\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1}=\sqrt{(a+b+c)(a_1+b_1+c_1)}$.
we have
$\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1}=\sqrt{(a+b+c)(a_1+b_1+c_1)}$.

$\equiv (\sqrt{aa_1}+\sqrt{bb_1}+\sqrt{cc_1})^2=(a+b+c)(a_1+b_1+c_1)$

$\equiv aa_1+bb_1+cc_1+2\sqrt{aa_1bb_1} + 2\sqrt{bb_1cc_1} + 2\sqrt{cc_1aa_1} = aa_1+ab_1 + ac_1 + ba_1 + bb_1 + bc_1 + ca_1 + cb_1 + cc_1$

$\equiv 2\sqrt{aa_1bb_1} + 2\sqrt{bb_1cc_1} + 2\sqrt{cc_1aa_1} = ab_1 + ac_1 + ba_1 + bc_1 + ca_1 + cb_1$

$\equiv ab_1 + ac_1 + ba_1 + bc_1 + ca_1 + cb_1-2(\sqrt{aa_1bb_1} + 2\sqrt{bb_1cc_1} + 2\sqrt{cc_1aa_1}) = 0$

$\equiv (\sqrt{ab_1} - \sqrt{a_1b})^2 + (\sqrt{ac_1} - \sqrt{a_1c})^2 + (\sqrt{bc_1} - \sqrt{b_1c})^2 = 0$

The above is true iff $ab_1 = a_1b$, $ac_1 = a_1c$, $bc_1 = b_1c$

giving $\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1}$ or the 2 triangles are similar
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 23 ·
Replies
23
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 15 ·
Replies
15
Views
21K
  • · Replies 19 ·
Replies
19
Views
3K