MHB Prove: $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$

AI Thread Summary
The discussion centers on proving the equation $(\sin \theta + i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$. Participants explore various mathematical approaches to validate this identity, emphasizing the use of complex numbers and trigonometric identities. The proof involves manipulating the left side using De Moivre's theorem and properties of sine and cosine functions. The consensus is that the equation holds true through these mathematical transformations. Ultimately, the proof illustrates the relationship between complex exponentiation and trigonometric functions.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Prove that $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$
 
Mathematics news on Phys.org
kaliprasad said:
Prove that $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$

Using Euler's formula,

$$\begin{align*}(\sin\theta+i\cos\theta)^8&=\left(\cos\left(\dfrac{\pi}{2}-\theta\right)+i\sin\left(\dfrac{\pi}{2}-\theta\right)\right)^8 \\
&=\left(e^{\left(\dfrac{\pi}{2}-\theta\right)i}\right)^8 \\
&=e^{(4\pi-8\theta)i} \\
&=\cos8\theta-i\sin8\theta\end{align*}$$
 
greg1313 said:
Using Euler's formula,

$$\begin{align*}(\sin\theta+i\cos\theta)^8&=\left(\cos\left(\dfrac{\pi}{2}-\theta\right)+i\sin\left(\dfrac{\pi}{2}-\theta\right)\right)^8 \\
&=\left(e^{\left(\dfrac{\pi}{2}-\theta\right)i}\right)^8 \\
&=e^{(4\pi-8\theta)i} \\
&=\cos8\theta-i\sin8\theta\end{align*}$$

nice
 
greg1313 said:
Using Euler's formula,

$$\begin{align*}(\sin\theta+i\cos\theta)^8&=\left(\cos\left(\dfrac{\pi}{2}-\theta\right)+i\sin\left(\dfrac{\pi}{2}-\theta\right)\right)^8 \\
&=\left(e^{\left(\dfrac{\pi}{2}-\theta\right)i}\right)^8 \\
&=e^{(4\pi-8\theta)i} \\
&=\cos8\theta-i\sin8\theta\end{align*}$$

above is a good ans
my answer different from above is as below
Using Euler's formula,
$(\sin\theta+i\cos\theta)^8 = i^8(\cos\theta - i \sin \theta)^8$
=$(e^{-i\theta})^8= e^{-i8\theta}$
= $\cos 8\theta - i \sin 8\theta$
 
kaliprasad said:
Prove that $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$

$\displaystyle \begin{align*} \left[ \sin{ \left( \theta \right) } + \mathrm{i}\cos{ \left( \theta \right) } \right] ^8 &= \left\{ \mathrm{i}\,\left[ \cos{ \left( \theta \right) } - \mathrm{i }\sin{\left( \theta \right) } \right] \right\} ^8 \\ &= \mathrm{i}^8\,\left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \right] ^8 \\ &= 1\,\left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \right] ^8 \\ &= \left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{\left( \theta \right) } \right] ^8 \\ &= \left[ \cos{ \left( -\theta \right) } + \mathrm{i}\sin{ \left( -\theta \right) } \right] ^8 \\ &= \left( \mathrm{e}^{-\mathrm{i}\,\theta} \right) ^8 \\ &= \mathrm{e}^{ -8\,\mathrm{i}\,\theta } \\ &= \cos{ \left( -8\,\theta \right) } + \mathrm{i}\sin{ \left( -8\,\theta \right) } \\ &= \cos{ \left( 8\,\theta \right) } - \mathrm{i}\sin{ \left( 8\,\theta \right) } \end{align*}$
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top