MHB Prove: $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$

AI Thread Summary
The discussion centers on proving the equation $(\sin \theta + i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$. Participants explore various mathematical approaches to validate this identity, emphasizing the use of complex numbers and trigonometric identities. The proof involves manipulating the left side using De Moivre's theorem and properties of sine and cosine functions. The consensus is that the equation holds true through these mathematical transformations. Ultimately, the proof illustrates the relationship between complex exponentiation and trigonometric functions.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Prove that $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$
 
Mathematics news on Phys.org
kaliprasad said:
Prove that $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$

Using Euler's formula,

$$\begin{align*}(\sin\theta+i\cos\theta)^8&=\left(\cos\left(\dfrac{\pi}{2}-\theta\right)+i\sin\left(\dfrac{\pi}{2}-\theta\right)\right)^8 \\
&=\left(e^{\left(\dfrac{\pi}{2}-\theta\right)i}\right)^8 \\
&=e^{(4\pi-8\theta)i} \\
&=\cos8\theta-i\sin8\theta\end{align*}$$
 
greg1313 said:
Using Euler's formula,

$$\begin{align*}(\sin\theta+i\cos\theta)^8&=\left(\cos\left(\dfrac{\pi}{2}-\theta\right)+i\sin\left(\dfrac{\pi}{2}-\theta\right)\right)^8 \\
&=\left(e^{\left(\dfrac{\pi}{2}-\theta\right)i}\right)^8 \\
&=e^{(4\pi-8\theta)i} \\
&=\cos8\theta-i\sin8\theta\end{align*}$$

nice
 
greg1313 said:
Using Euler's formula,

$$\begin{align*}(\sin\theta+i\cos\theta)^8&=\left(\cos\left(\dfrac{\pi}{2}-\theta\right)+i\sin\left(\dfrac{\pi}{2}-\theta\right)\right)^8 \\
&=\left(e^{\left(\dfrac{\pi}{2}-\theta\right)i}\right)^8 \\
&=e^{(4\pi-8\theta)i} \\
&=\cos8\theta-i\sin8\theta\end{align*}$$

above is a good ans
my answer different from above is as below
Using Euler's formula,
$(\sin\theta+i\cos\theta)^8 = i^8(\cos\theta - i \sin \theta)^8$
=$(e^{-i\theta})^8= e^{-i8\theta}$
= $\cos 8\theta - i \sin 8\theta$
 
kaliprasad said:
Prove that $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$

$\displaystyle \begin{align*} \left[ \sin{ \left( \theta \right) } + \mathrm{i}\cos{ \left( \theta \right) } \right] ^8 &= \left\{ \mathrm{i}\,\left[ \cos{ \left( \theta \right) } - \mathrm{i }\sin{\left( \theta \right) } \right] \right\} ^8 \\ &= \mathrm{i}^8\,\left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \right] ^8 \\ &= 1\,\left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \right] ^8 \\ &= \left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{\left( \theta \right) } \right] ^8 \\ &= \left[ \cos{ \left( -\theta \right) } + \mathrm{i}\sin{ \left( -\theta \right) } \right] ^8 \\ &= \left( \mathrm{e}^{-\mathrm{i}\,\theta} \right) ^8 \\ &= \mathrm{e}^{ -8\,\mathrm{i}\,\theta } \\ &= \cos{ \left( -8\,\theta \right) } + \mathrm{i}\sin{ \left( -8\,\theta \right) } \\ &= \cos{ \left( 8\,\theta \right) } - \mathrm{i}\sin{ \left( 8\,\theta \right) } \end{align*}$
 
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top