Prove: $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$

  • Context: MHB 
  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Proof Trigonometric
Click For Summary
SUMMARY

The equation $(\sin \theta + i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$ is proven using De Moivre's Theorem, which states that $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$. By rewriting $(\sin \theta + i \cos \theta)$ in terms of cosine and sine, the proof confirms that the left-hand side simplifies to the right-hand side when raised to the eighth power. This establishes the equality definitively.

PREREQUISITES
  • Understanding of complex numbers and their representation
  • Familiarity with De Moivre's Theorem
  • Knowledge of trigonometric identities
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study De Moivre's Theorem in depth
  • Explore the properties of complex exponentiation
  • Learn about trigonometric identities and their applications
  • Investigate the geometric interpretation of complex numbers
USEFUL FOR

Mathematicians, physics students, and anyone studying complex analysis or trigonometry will benefit from this discussion.

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Prove that $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$
 
Physics news on Phys.org
kaliprasad said:
Prove that $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$

Using Euler's formula,

$$\begin{align*}(\sin\theta+i\cos\theta)^8&=\left(\cos\left(\dfrac{\pi}{2}-\theta\right)+i\sin\left(\dfrac{\pi}{2}-\theta\right)\right)^8 \\
&=\left(e^{\left(\dfrac{\pi}{2}-\theta\right)i}\right)^8 \\
&=e^{(4\pi-8\theta)i} \\
&=\cos8\theta-i\sin8\theta\end{align*}$$
 
greg1313 said:
Using Euler's formula,

$$\begin{align*}(\sin\theta+i\cos\theta)^8&=\left(\cos\left(\dfrac{\pi}{2}-\theta\right)+i\sin\left(\dfrac{\pi}{2}-\theta\right)\right)^8 \\
&=\left(e^{\left(\dfrac{\pi}{2}-\theta\right)i}\right)^8 \\
&=e^{(4\pi-8\theta)i} \\
&=\cos8\theta-i\sin8\theta\end{align*}$$

nice
 
greg1313 said:
Using Euler's formula,

$$\begin{align*}(\sin\theta+i\cos\theta)^8&=\left(\cos\left(\dfrac{\pi}{2}-\theta\right)+i\sin\left(\dfrac{\pi}{2}-\theta\right)\right)^8 \\
&=\left(e^{\left(\dfrac{\pi}{2}-\theta\right)i}\right)^8 \\
&=e^{(4\pi-8\theta)i} \\
&=\cos8\theta-i\sin8\theta\end{align*}$$

above is a good ans
my answer different from above is as below
Using Euler's formula,
$(\sin\theta+i\cos\theta)^8 = i^8(\cos\theta - i \sin \theta)^8$
=$(e^{-i\theta})^8= e^{-i8\theta}$
= $\cos 8\theta - i \sin 8\theta$
 
kaliprasad said:
Prove that $(\sin \theta+ i \cos \theta)^8 = \cos 8\theta - i \sin 8\theta$

$\displaystyle \begin{align*} \left[ \sin{ \left( \theta \right) } + \mathrm{i}\cos{ \left( \theta \right) } \right] ^8 &= \left\{ \mathrm{i}\,\left[ \cos{ \left( \theta \right) } - \mathrm{i }\sin{\left( \theta \right) } \right] \right\} ^8 \\ &= \mathrm{i}^8\,\left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \right] ^8 \\ &= 1\,\left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \right] ^8 \\ &= \left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{\left( \theta \right) } \right] ^8 \\ &= \left[ \cos{ \left( -\theta \right) } + \mathrm{i}\sin{ \left( -\theta \right) } \right] ^8 \\ &= \left( \mathrm{e}^{-\mathrm{i}\,\theta} \right) ^8 \\ &= \mathrm{e}^{ -8\,\mathrm{i}\,\theta } \\ &= \cos{ \left( -8\,\theta \right) } + \mathrm{i}\sin{ \left( -8\,\theta \right) } \\ &= \cos{ \left( 8\,\theta \right) } - \mathrm{i}\sin{ \left( 8\,\theta \right) } \end{align*}$
 
Last edited by a moderator:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
987
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
7K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K