$\displaystyle \begin{align*} \left[ \sin{ \left( \theta \right) } + \mathrm{i}\cos{ \left( \theta \right) } \right] ^8 &= \left\{ \mathrm{i}\,\left[ \cos{ \left( \theta \right) } - \mathrm{i }\sin{\left( \theta \right) } \right] \right\} ^8 \\ &= \mathrm{i}^8\,\left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \right] ^8 \\ &= 1\,\left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \right] ^8 \\ &= \left[ \cos{ \left( \theta \right) } - \mathrm{i}\sin{\left( \theta \right) } \right] ^8 \\ &= \left[ \cos{ \left( -\theta \right) } + \mathrm{i}\sin{ \left( -\theta \right) } \right] ^8 \\ &= \left( \mathrm{e}^{-\mathrm{i}\,\theta} \right) ^8 \\ &= \mathrm{e}^{ -8\,\mathrm{i}\,\theta } \\ &= \cos{ \left( -8\,\theta \right) } + \mathrm{i}\sin{ \left( -8\,\theta \right) } \\ &= \cos{ \left( 8\,\theta \right) } - \mathrm{i}\sin{ \left( 8\,\theta \right) } \end{align*}$