MHB Prove $\sqrt{1+\sqrt{2+\cdots+\sqrt{2006}}} < 2$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$.

Note that:
$$\sqrt{c + a} < b ~ ~ \iff ~ ~ c + a < b^2 ~ ~ \iff ~ ~ a < b^2 - c$$
For instance we have:
$$\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$$
$$\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}<3$$
$$\sqrt{3+\cdots+\sqrt{2006}}<7$$
$$\cdots$$
Unrolling the nested square roots as above, we must therefore show that:
$$\sqrt{2006} < ((((2^2 - 1)^2 - 2)^2 - 3)^2 - \cdots)^2 - 2005$$
Note that the sequence defined by $a_1 = 2$ and $a_{n + 1} = a_n^2 - n$, corresponding to the sequence of RHS above, is increasing. We prove this by induction by showing that $a_n \geq n + 1$. First $a_1 = 2$ so the base case holds, now assume $a_n \geq n + 1$, then $a_n^2 - n \geq (n + 1)^2 - n$, that is, $a_{n + 1} = a_n^2 - n \geq n^2 + n + 1 \geq (n + 1) + 1$ as $n^2 \geq 1$. By induction, $a_n \geq n + 1$ for all $n$. Thus we can now show that $a_{n + 1} = a_n^2 - n \geq a_n$, as that is equivalent to $a_n^2 - a_n - n \geq 0$, and since $m^2 \geq 2m$ for all $\lvert m \rvert > 1$ it follows that $a_n^2 - a_ n - n \geq a_n - n \geq (n + 1) - n \geq 1 \geq 0$ and so $(a_n)_{n = 1}^\infty$ is increasing. Finally, the sequence becomes greater than $\sqrt{2006} \approx 44.788$ at $n = 4$ by simple arithmetic as $a_4 = 46$, which proves the claim. $\blacksquare$​
 
Last edited:
Bacterius said:
Note that:
$$\sqrt{c + a} < b ~ ~ \iff ~ ~ c + a < b^2 ~ ~ \iff ~ ~ a < b^2 - c$$
For instance we have:
$$\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$$
$$\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}<3$$
$$\sqrt{3+\cdots+\sqrt{2006}}<7$$
$$\cdots$$
Unrolling the nested square roots as above, we must therefore show that:
$$\sqrt{2006} < ((((2^2 - 1)^2 - 2)^2 - 3)^2 - \cdots)^2 - 2005$$
Note that the sequence defined by $a_1 = 2$ and $a_{n + 1} = a_n^2 - n$, corresponding to the sequence of RHS above, is increasing. We prove this by induction by showing that $a_n \geq n + 1$. First $a_1 = 2$ so the base case holds, now assume $a_n \geq n + 1$, then $a_n^2 - n \geq (n + 1)^2 - n$, that is, $a_{n + 1} = a_n^2 - n \geq n^2 + n + 1 \geq (n + 1) + 1$ as $n^2 \geq 1$. By induction, $a_n \geq n + 1$ for all $n$. Thus we can now show that $a_{n + 1} = a_n^2 - n \geq a_n$, as that is equivalent to $a_n^2 - a_n - n \geq 0$, and since $m^2 \geq 2m$ for all $\lvert m \rvert > 1$ it follows that $a_n^2 - a_ n - n \geq a_n - n \geq (n + 1) - n \geq 1 \geq 0$ and so $(a_n)_{n = 1}^\infty$ is increasing. Finally, the sequence becomes greater than $\sqrt{2006} \approx 44.788$ at $n = 4$ by simple arithmetic as $a_4 = 46$, which proves the claim. $\blacksquare$​

Well done, Bacterius, and thanks for participating!

Solution of other:

Let $X=\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2004+\sqrt{2005+\sqrt{2006}}}}}}$, note that $\sqrt{2005+\sqrt{2006}}<\sqrt{2005+46}<46$

$\therefore X<\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2004+46}}}}$

By the same token

$X<\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2003+46}}}}$
$\vdots$

$X<\sqrt{1+\sqrt{2+\sqrt{3++46}}}=2$ and this completes the proof.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top