Prove $\sqrt{1+\sqrt{2+\cdots+\sqrt{2006}}} < 2$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality $\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}} < 2$ has been established as true through mathematical induction and bounding techniques. The discussion emphasizes the importance of recognizing the nested radical structure and applying limits to demonstrate that the expression converges to a value less than 2. Participants, including Bacterius, contributed to the proof, reinforcing the validity of the conclusion.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with nested radicals
  • Basic knowledge of limits and convergence
  • Experience with inequalities in real analysis
NEXT STEPS
  • Study mathematical induction techniques in depth
  • Explore properties of nested radicals
  • Learn about convergence criteria for sequences
  • Investigate inequalities in real analysis
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in advanced inequality proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$.

Note that:
$$\sqrt{c + a} < b ~ ~ \iff ~ ~ c + a < b^2 ~ ~ \iff ~ ~ a < b^2 - c$$
For instance we have:
$$\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$$
$$\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}<3$$
$$\sqrt{3+\cdots+\sqrt{2006}}<7$$
$$\cdots$$
Unrolling the nested square roots as above, we must therefore show that:
$$\sqrt{2006} < ((((2^2 - 1)^2 - 2)^2 - 3)^2 - \cdots)^2 - 2005$$
Note that the sequence defined by $a_1 = 2$ and $a_{n + 1} = a_n^2 - n$, corresponding to the sequence of RHS above, is increasing. We prove this by induction by showing that $a_n \geq n + 1$. First $a_1 = 2$ so the base case holds, now assume $a_n \geq n + 1$, then $a_n^2 - n \geq (n + 1)^2 - n$, that is, $a_{n + 1} = a_n^2 - n \geq n^2 + n + 1 \geq (n + 1) + 1$ as $n^2 \geq 1$. By induction, $a_n \geq n + 1$ for all $n$. Thus we can now show that $a_{n + 1} = a_n^2 - n \geq a_n$, as that is equivalent to $a_n^2 - a_n - n \geq 0$, and since $m^2 \geq 2m$ for all $\lvert m \rvert > 1$ it follows that $a_n^2 - a_ n - n \geq a_n - n \geq (n + 1) - n \geq 1 \geq 0$ and so $(a_n)_{n = 1}^\infty$ is increasing. Finally, the sequence becomes greater than $\sqrt{2006} \approx 44.788$ at $n = 4$ by simple arithmetic as $a_4 = 46$, which proves the claim. $\blacksquare$​
 
Last edited:
Bacterius said:
Note that:
$$\sqrt{c + a} < b ~ ~ \iff ~ ~ c + a < b^2 ~ ~ \iff ~ ~ a < b^2 - c$$
For instance we have:
$$\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}}<2$$
$$\sqrt{2+\sqrt{3+\cdots+\sqrt{2006}}}<3$$
$$\sqrt{3+\cdots+\sqrt{2006}}<7$$
$$\cdots$$
Unrolling the nested square roots as above, we must therefore show that:
$$\sqrt{2006} < ((((2^2 - 1)^2 - 2)^2 - 3)^2 - \cdots)^2 - 2005$$
Note that the sequence defined by $a_1 = 2$ and $a_{n + 1} = a_n^2 - n$, corresponding to the sequence of RHS above, is increasing. We prove this by induction by showing that $a_n \geq n + 1$. First $a_1 = 2$ so the base case holds, now assume $a_n \geq n + 1$, then $a_n^2 - n \geq (n + 1)^2 - n$, that is, $a_{n + 1} = a_n^2 - n \geq n^2 + n + 1 \geq (n + 1) + 1$ as $n^2 \geq 1$. By induction, $a_n \geq n + 1$ for all $n$. Thus we can now show that $a_{n + 1} = a_n^2 - n \geq a_n$, as that is equivalent to $a_n^2 - a_n - n \geq 0$, and since $m^2 \geq 2m$ for all $\lvert m \rvert > 1$ it follows that $a_n^2 - a_ n - n \geq a_n - n \geq (n + 1) - n \geq 1 \geq 0$ and so $(a_n)_{n = 1}^\infty$ is increasing. Finally, the sequence becomes greater than $\sqrt{2006} \approx 44.788$ at $n = 4$ by simple arithmetic as $a_4 = 46$, which proves the claim. $\blacksquare$​

Well done, Bacterius, and thanks for participating!

Solution of other:

Let $X=\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2004+\sqrt{2005+\sqrt{2006}}}}}}$, note that $\sqrt{2005+\sqrt{2006}}<\sqrt{2005+46}<46$

$\therefore X<\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2004+46}}}}$

By the same token

$X<\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{2003+46}}}}$
$\vdots$

$X<\sqrt{1+\sqrt{2+\sqrt{3++46}}}=2$ and this completes the proof.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K