MHB Prove statement- Little-O notation

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Notation
Click For Summary
The discussion centers on proving or disproving the statement $f(n) + o(f(n)) = \Theta(f(n))$. The user initially considers setting $g(n) = o(f(n))$ and applying the definition of little-o notation. They derive that $f(n) \leq f(n) + g(n) < (c + 1)f(n)$, suggesting that the statement holds. However, they later acknowledge that their initial belief may be incorrect and concede that the proof presented by another participant is valid. The conclusion reached is that the original statement is indeed incorrect, supported by the counterexample discussed.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Smile)

I want to prove or disprove the statement $f(n)+o(f(n))=\Theta(f(n))$.
Do I have to set $g(n)=o(f(n))$ and use the definition, that is that $\forall c>0, \exists n_0(c) \in \mathbb{N}$ such that $\forall n \geq n_0: 0 \leq g(n)<cf(n)$ ? (Thinking)

Is the following right?

We set $g(n)=o(f(n))$.That means that $\forall c>0, \exists n_0 \in \mathbb{N}$ such that $\forall n \geq n_0: 0 \leq g(n)< cf(n)$.
So: $f(n) \leq f(n)+g(n) < cf(n)+f(n)=(c+1)f(n), \forall n \geq n_0$.
Right? So do we say that $f(n) \leq f(n)+g(n) < cf(n)+f(n)=(c+1)f(n) \Rightarrow f(n) \leq f(n)+g(n) \leq (c+1)f(n), \forall n \geq n_0$

So picking $c_1=1, c_2=c+1$ we see that $f(n)+g(n)=\Theta(f(n)) \Leftrightarrow f(n)+o(g(n))=\Theta(f(n))$.
 
Last edited:
Physics news on Phys.org
I think the statement is wrong by counter example.
 
ZaidAlyafey said:
I think the statement is wrong by counter example.

So is my proof wrong? Which counterexample did you find?
 
evinda said:
So is my proof wrong? Which counterexample did you find?

I'm really sorry. I think I am wrong. Your proof is correct.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K