Undergrad Prove $$T_{p}M$$ is a vector space with the axioms

Click For Summary
The discussion focuses on proving that the tangent space $$T_{p}M$$ at a point $$p$$ on a manifold $$M$$ is a vector space by using the vector space axioms. It begins by defining tangent vectors as operators that act on differentiable functions at $$p$$, establishing a set of all such tangent vectors as $$T_{p}M$$. The addition of two tangent vectors and scalar multiplication is defined, allowing the set to satisfy the necessary vector space properties. The closure under addition and scalar multiplication is demonstrated, ensuring that the axioms of a vector space are satisfied. Ultimately, this establishes that $$T_{p}M$$ is indeed a vector space.
Delong66
Messages
4
Reaction score
0
Suppose M is a manifold and $$T_{p}M$$ is the tangent space at a point $$p \in M$$. How do i prove that it is indeed a vector space using the axioms:
Suppose that u,v, w $$\in V$$. where u,v, w are vectors and $$\V$$ is a vector space

$$u + v \in V \tag{Closure under addition}$$

$$u + v = v + u \tag{Commutative property}$$

$$u + (v+w)=(u+v)+w \tag{Associative property}$$

V has a zero vector 0 such that for every $$\u \in \V$$, $$u+0=u$$. $$\tag{Additive identity}$$

For every $$u \in V$$, there is a vector in V denoted by −u such that u+(−u)=0. $$\tag{Additive inverse}$$

Now let's also assume that $$c,d \in \mathbb R$$

$$cu \in V \tag{Closure under scalar multiplication}$$

$$c(u+v)=cu+cv \tag{Distributive property}$$

$$(c+d)u=cu+du \tag{Distributive property}$$

$$c(du)=(cd)u \tag{Associative property}$$

$$1(u)=u \tag{Scalar identity}$$
 
Physics news on Phys.org
You listed the axioms of a vector space, but how do you define the tangent space? What does an element of ##T_pM## look like?
 
  • Like
Likes Orodruin and topsquark
Definition 1: Suppose M a differentiable manifold and $$p\in M$$.
A funtion $$f:M \rightarrow \mathbb{R}$$ is differentiable at $$p \in M$$ iff $$\exists U_p \subset M$$ : $$f:U_p \rightarrow \mathbb{R}$$ is differentiable.

Definition 2:Dp ={set of all differentiable functions at p in M}

Definition 3: Suppose M a differentiable manifold and $$p\in M$$.
A tangent vector at $$p\in M$$ is an operator $$v:D_p \rightarrow \mathbb{R} \quad : \quad f \mapsto v(f)$$ with
i) $$v(mf+ng)=mv(f)+nv(g) \quad \forall f,g \in D_p$$
ii)$$v(fg)=v(f)g(p)+f(p)v(g) \quad \forall f,g \in D_p$$
\
Definition 4: TpM={set of all tangent vectors at p in M}
 
Definitions 1 and 2 define the differentiability at points of ##M,## i.e. differential functions, not their tangents.

Definition 3 defines one tangent vector, definition 4 defines the set of all tangent vectors. However, it does not tell anything about the relation between two such operators ##v## and ##w.## We now have a set, nothing more. How do we make this set a vector space?

We need to define ##v+w## so we set: ##(v+w)(f):=v(f)+w(f)## and ##(\alpha v)(f):=\alpha \cdot v(f).##
This makes the set of derivations, the operators, a linear space. The axioms follow automatically.

If you want to calculate something, then consider curves on ##M## through ##p## and calculate actual tangent vectors and show that ##D_p(v+w)(f)=D_p(v)(f)+D_p(w)(f).## You can also use the coordinate directions and partial derivatives:
$$
D_p(v)(f)=\sum_{i=1}^n\, v_i\, \frac{\partial f}{\partial x_i}(p)
$$
This could also help (##p=x_0, J=D, J## for Jacobi matrix)
https://www.physicsforums.com/insights/pantheon-derivatives-part-ii/
 
Last edited:

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
14K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K