MHB Prove tan x + tan(x+60°) + tan(x+120°)= 3 tan 3x

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The equation tan x + tan(x+60°) + tan(x+120°) = 3 tan 3x can be proven by recognizing that the tangents of the angles are roots of the equation tan 3θ = tan 3x. This leads to the formulation t^3 - (3 tan 3x)t^2 - 3t + tan 3x = 0, where the sum of the roots equals 3 tan 3x. The proof holds true except at points where the tangent function is undefined. Thus, the statement is validated under the specified conditions.
Albert1
Messages
1,221
Reaction score
0
Prove

is the statement true ?

$ tan \,x + tan(x+60^o) + tan(x+120^o)= 3\, tan\, 3x$
 
Last edited:
Mathematics news on Phys.org
Re: Prove

[sp]If $t=\tan\theta$ then $t= \tan x$, $t=\tan(x+60^\circ)$ and $t=\tan(x+120^\circ)$ are the roots of the equation $\tan 3\theta = \tan 3x$. But $\tan 3\theta = \dfrac{t^3-3t}{3t^2-1}$. So the equation can be written as $t^3-3t = (3t^2-1)\tan3x$, or $t^3 - (3\tan3x)t^2 -3t + \tan3x = 0.$ The sum of the roots of that equation is $3\tan3x.$ Hence $\tan x + \tan(x+60^\circ) + \tan(x+120^\circ) = 3\tan3x$ (with the proviso that the tan function becomes infinite at some points, in which case both sides of the equation will be undefined).[/sp]
 
Re: Prove

Opalg said:
[sp]If $t=\tan\theta$ then $t= \tan x$, $t=\tan(x+60^\circ)$ and $t=\tan(x+120^\circ)$ are the roots of the equation $\tan 3\theta = \tan 3x$. But $\tan 3\theta = \dfrac{t^3-3t}{3t^2-1}$. So the equation can be written as $t^3-3t = (3t^2-1)\tan3x$, or $t^3 - (3\tan3x)t^2 -3t + \tan3x = 0.$ The sum of the roots of that equation is $3\tan3x.$ Hence $\tan x + \tan(x+60^\circ) + \tan(x+120^\circ) = 3\tan3x$ (with the proviso that the tan function becomes infinite at some points, in which case both sides of the equation will be undefined).[/sp]
very good solution :)
 
Re: Prove

Albert said:
is the statement true ?

$ tan \,x + tan(x+60^o) + tan(x+120^o)= 3\, tan\, 3x----(1)$
$ tan \,x + tan(x+60^o) + tan(x+120^o)$
$ =tan \,x + tan(60^o+x) - tan(60^o-x)$
$= tan \,x + tan\,2x[(1+tan(60^o+x)\times tan(60^o-x)]$
let :$tan\, x=t$
we have:$t+\dfrac {2t}{1-t^2}\times(1+\dfrac{3-t^2}{1-3t^2})$
$=t+\dfrac{2t}{1-t^2}(\dfrac{4-4t^2}{1-3t^2})$
$=t+\dfrac{8t}{1-3t^2}$
$=\dfrac{9t-3t^3}{1-3t^2}$
$=3\,tan\,3x---(1)$
here :$1-3t^2\neq 0$
now (1) has been proved :
please use(1) and find the value of :
$tan\,1^o+tan\,5^o+tan\,9^o+------+tan\,177^o=?$
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K