MHB Prove tan x + tan(x+60°) + tan(x+120°)= 3 tan 3x

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The equation tan x + tan(x+60°) + tan(x+120°) = 3 tan 3x can be proven by recognizing that the tangents of the angles are roots of the equation tan 3θ = tan 3x. This leads to the formulation t^3 - (3 tan 3x)t^2 - 3t + tan 3x = 0, where the sum of the roots equals 3 tan 3x. The proof holds true except at points where the tangent function is undefined. Thus, the statement is validated under the specified conditions.
Albert1
Messages
1,221
Reaction score
0
Prove

is the statement true ?

$ tan \,x + tan(x+60^o) + tan(x+120^o)= 3\, tan\, 3x$
 
Last edited:
Mathematics news on Phys.org
Re: Prove

[sp]If $t=\tan\theta$ then $t= \tan x$, $t=\tan(x+60^\circ)$ and $t=\tan(x+120^\circ)$ are the roots of the equation $\tan 3\theta = \tan 3x$. But $\tan 3\theta = \dfrac{t^3-3t}{3t^2-1}$. So the equation can be written as $t^3-3t = (3t^2-1)\tan3x$, or $t^3 - (3\tan3x)t^2 -3t + \tan3x = 0.$ The sum of the roots of that equation is $3\tan3x.$ Hence $\tan x + \tan(x+60^\circ) + \tan(x+120^\circ) = 3\tan3x$ (with the proviso that the tan function becomes infinite at some points, in which case both sides of the equation will be undefined).[/sp]
 
Re: Prove

Opalg said:
[sp]If $t=\tan\theta$ then $t= \tan x$, $t=\tan(x+60^\circ)$ and $t=\tan(x+120^\circ)$ are the roots of the equation $\tan 3\theta = \tan 3x$. But $\tan 3\theta = \dfrac{t^3-3t}{3t^2-1}$. So the equation can be written as $t^3-3t = (3t^2-1)\tan3x$, or $t^3 - (3\tan3x)t^2 -3t + \tan3x = 0.$ The sum of the roots of that equation is $3\tan3x.$ Hence $\tan x + \tan(x+60^\circ) + \tan(x+120^\circ) = 3\tan3x$ (with the proviso that the tan function becomes infinite at some points, in which case both sides of the equation will be undefined).[/sp]
very good solution :)
 
Re: Prove

Albert said:
is the statement true ?

$ tan \,x + tan(x+60^o) + tan(x+120^o)= 3\, tan\, 3x----(1)$
$ tan \,x + tan(x+60^o) + tan(x+120^o)$
$ =tan \,x + tan(60^o+x) - tan(60^o-x)$
$= tan \,x + tan\,2x[(1+tan(60^o+x)\times tan(60^o-x)]$
let :$tan\, x=t$
we have:$t+\dfrac {2t}{1-t^2}\times(1+\dfrac{3-t^2}{1-3t^2})$
$=t+\dfrac{2t}{1-t^2}(\dfrac{4-4t^2}{1-3t^2})$
$=t+\dfrac{8t}{1-3t^2}$
$=\dfrac{9t-3t^3}{1-3t^2}$
$=3\,tan\,3x---(1)$
here :$1-3t^2\neq 0$
now (1) has been proved :
please use(1) and find the value of :
$tan\,1^o+tan\,5^o+tan\,9^o+------+tan\,177^o=?$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K