Prove tan x + tan(x+60°) + tan(x+120°)= 3 tan 3x

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
SUMMARY

The equation tan x + tan(x+60°) + tan(x+120°) = 3 tan 3x is proven to be true by analyzing the roots of the equation tan 3θ = tan 3x. By substituting t = tan θ, the equation transforms into t³ - (3 tan 3x)t² - 3t + tan 3x = 0. The sum of the roots of this polynomial confirms that tan x + tan(x+60°) + tan(x+120°) = 3 tan 3x, acknowledging that the tangent function can be undefined at certain points.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with polynomial equations
  • Knowledge of the tangent function and its properties
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the derivation of tan 3θ and its implications
  • Explore the behavior of the tangent function at undefined points
  • Learn about polynomial root properties and Vieta's formulas
  • Investigate other trigonometric identities involving sums of tangents
USEFUL FOR

Mathematicians, students studying trigonometry, educators teaching advanced algebra, and anyone interested in proving trigonometric identities.

Albert1
Messages
1,221
Reaction score
0
Prove

is the statement true ?

$ tan \,x + tan(x+60^o) + tan(x+120^o)= 3\, tan\, 3x$
 
Last edited:
Mathematics news on Phys.org
Re: Prove

[sp]If $t=\tan\theta$ then $t= \tan x$, $t=\tan(x+60^\circ)$ and $t=\tan(x+120^\circ)$ are the roots of the equation $\tan 3\theta = \tan 3x$. But $\tan 3\theta = \dfrac{t^3-3t}{3t^2-1}$. So the equation can be written as $t^3-3t = (3t^2-1)\tan3x$, or $t^3 - (3\tan3x)t^2 -3t + \tan3x = 0.$ The sum of the roots of that equation is $3\tan3x.$ Hence $\tan x + \tan(x+60^\circ) + \tan(x+120^\circ) = 3\tan3x$ (with the proviso that the tan function becomes infinite at some points, in which case both sides of the equation will be undefined).[/sp]
 
Re: Prove

Opalg said:
[sp]If $t=\tan\theta$ then $t= \tan x$, $t=\tan(x+60^\circ)$ and $t=\tan(x+120^\circ)$ are the roots of the equation $\tan 3\theta = \tan 3x$. But $\tan 3\theta = \dfrac{t^3-3t}{3t^2-1}$. So the equation can be written as $t^3-3t = (3t^2-1)\tan3x$, or $t^3 - (3\tan3x)t^2 -3t + \tan3x = 0.$ The sum of the roots of that equation is $3\tan3x.$ Hence $\tan x + \tan(x+60^\circ) + \tan(x+120^\circ) = 3\tan3x$ (with the proviso that the tan function becomes infinite at some points, in which case both sides of the equation will be undefined).[/sp]
very good solution :)
 
Re: Prove

Albert said:
is the statement true ?

$ tan \,x + tan(x+60^o) + tan(x+120^o)= 3\, tan\, 3x----(1)$
$ tan \,x + tan(x+60^o) + tan(x+120^o)$
$ =tan \,x + tan(60^o+x) - tan(60^o-x)$
$= tan \,x + tan\,2x[(1+tan(60^o+x)\times tan(60^o-x)]$
let :$tan\, x=t$
we have:$t+\dfrac {2t}{1-t^2}\times(1+\dfrac{3-t^2}{1-3t^2})$
$=t+\dfrac{2t}{1-t^2}(\dfrac{4-4t^2}{1-3t^2})$
$=t+\dfrac{8t}{1-3t^2}$
$=\dfrac{9t-3t^3}{1-3t^2}$
$=3\,tan\,3x---(1)$
here :$1-3t^2\neq 0$
now (1) has been proved :
please use(1) and find the value of :
$tan\,1^o+tan\,5^o+tan\,9^o+------+tan\,177^o=?$
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K