MHB Prove that A - (B U C) = (A - B) ∩ (A - C)

  • Thread starter Thread starter KOO
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the set identity A - (B ∪ C) = (A - B) ∩ (A - C) using set theory principles. The proof employs De Morgan's laws and the definitions of set subtraction. Key steps include transforming the left-hand side (L.H.S) into an intersection of complements and demonstrating that it equals the right-hand side (R.H.S) through associative and commutative properties. The conclusion confirms the identity as valid.

PREREQUISITES
  • Understanding of set theory concepts, including set subtraction and union.
  • Familiarity with De Morgan's laws in set operations.
  • Knowledge of basic logical equivalences in mathematics.
  • Ability to manipulate set expressions using associative and commutative properties.
NEXT STEPS
  • Study De Morgan's laws in depth for better comprehension of set operations.
  • Explore advanced set theory concepts, such as Cartesian products and power sets.
  • Learn about logical equivalences and their applications in mathematical proofs.
  • Practice proving other set identities to enhance problem-solving skills in set theory.
USEFUL FOR

Mathematicians, students studying set theory, educators teaching mathematical proofs, and anyone interested in formal logic and set operations.

KOO
Messages
19
Reaction score
0
Let A, B, and C be three sets. Prove that A-(BUC) = (A-B) ∩ (A-C)

Solution)

L.H.S = A - (B U C)
A ∩ (B U C)c
A ∩ (B c ∩ Cc)
(A ∩ Bc) ∩ (A∩ Cc)
(AUB) ∩ (AUC)

R.H.S = (A-B) ∩ (A-C)
(A∩Bc) ∩ (A∩Cc)
(AUB) ∩ (AUC)

L.H.S = R.H.S

Is this correct?
 
Physics news on Phys.org
Re: Prove that A - (BUC) = (A-B) ∩ (A-C)

KOO said:
Let A, B, and C be three sets. Prove that A-(BUC) = (A-B) ∩ (A-C)

Solution)

L.H.S = A - (B U C)
A ∩ (B U C)c
A ∩ (B c ∩ Cc)
(A ∩ Bc) ∩ (A∩ Cc)
(AUB) ∩ (AUC)

R.H.S = (A-B) ∩ (A-C)
(A∩Bc) ∩ (A∩Cc)
(AUB) ∩ (AUC)

L.H.S = R.H.S

Is this correct?

(A ∩ Bc) ∩ (A∩ Cc) = (AUB) ∩ (AUC) , this is not correct you could use
A ∩ Bc = A - B , and A∩ Cc=A - C
In fact
(A ∩ Bc) = (AcUB)c

The red lines are false are and they are not useful, you solved it but the last lines are not equal to the previous ones
 
$$x \in A-(B \cup C) \leftrightarrow x \in A \wedge x \notin B \cup C \rightarrow x \in A \wedge x \notin B \wedge x \notin C \\ \leftrightarrow (x \in A \wedge x \notin B) \wedge (x \in A \wedge x \notin C) \leftrightarrow x \in A-B \wedge x \in A-C \leftrightarrow x \in (A-B) \cap (A-C)$$
 
Hello, KOO!

We should work on one side of the equation.

Let A, B, C be three sets.
Prove that:.A - (B \cup C) \:=\: (A-B) \cap (A-C)
\begin{array}{cccccc}<br /> 1. &amp; A -(B \cap C) &amp;&amp; 1. &amp;\text{Given} \\<br /> 2. &amp; A \cap(B\cup C)^c &amp;&amp; 2. &amp;\text{def. Subtr&#039;n} \\<br /> 3. &amp; A \cap B^c \cap C^c &amp;&amp; 3. &amp; \text{DeMorgan} \\<br /> 4. &amp; A \cap A \cap B^c \cap C^c &amp;&amp; 4. &amp; \text{Duplication} \\<br /> 5. &amp; A\cap B^c \cap A \cap C^c &amp;&amp; 5. &amp; \text{Commutative} \\<br /> 6. &amp; (A \cap B^c) \cap (A \cap C^c) &amp;&amp; 6. &amp; \text{Associative} \\<br /> 7. &amp; (A-B) \cap (A-C) &amp;&amp; 7. &amp; \text{def. Subtr&#039;n}\end{array}
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
790
  • · Replies 7 ·
Replies
7
Views
2K