MHB Prove that center of DG = center of the red circle.

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Center Circle
AI Thread Summary
To prove that the center of DG equals the center of the red circle, one must extend lines in the figure. Extending line FC shows it passes through point D, while extending line EC demonstrates it passes through point G. By extending lines GA and DB to meet at point X, it can be established that X lies on the red circle, with CX acting as a diameter. Additionally, CDXG forms a parallelogram, confirming that its diagonals intersect at the circle's center. This geometric reasoning supports the claim that the centers coincide.
maxkor
Messages
79
Reaction score
0
Let BCED and ACFG square. Prove that center of DG = center of the red circle.

View attachment 6025

I don't know how to start
 

Attachments

  • a.JPG
    a.JPG
    8.5 KB · Views: 104
Last edited:
Mathematics news on Phys.org
maxkor said:
Let BCED and ACFG square. Prove that center of DG = center of the red circle.
I don't know how to start
Extend some of the lines in the figure.

• Show that if you extend the line FC then it passes through D.

• Show that if you extend the line EC then it passes through G.

• Show that if you extend the lines GA and DB to meet at X then X lies on the red circle, and CX is a diameter of the circle.

• Show that CDXG is a parallelogram whose diagonals meet at the centre of the circle.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
3
Views
1K
Replies
2
Views
1K
Replies
4
Views
1K
Replies
6
Views
1K
Replies
1
Views
2K
Back
Top