MHB Prove that center of DG = center of the red circle.

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Center Circle
AI Thread Summary
To prove that the center of DG equals the center of the red circle, one must extend lines in the figure. Extending line FC shows it passes through point D, while extending line EC demonstrates it passes through point G. By extending lines GA and DB to meet at point X, it can be established that X lies on the red circle, with CX acting as a diameter. Additionally, CDXG forms a parallelogram, confirming that its diagonals intersect at the circle's center. This geometric reasoning supports the claim that the centers coincide.
maxkor
Messages
79
Reaction score
0
Let BCED and ACFG square. Prove that center of DG = center of the red circle.

View attachment 6025

I don't know how to start
 

Attachments

  • a.JPG
    a.JPG
    8.5 KB · Views: 102
Last edited:
Mathematics news on Phys.org
maxkor said:
Let BCED and ACFG square. Prove that center of DG = center of the red circle.
I don't know how to start
Extend some of the lines in the figure.

• Show that if you extend the line FC then it passes through D.

• Show that if you extend the line EC then it passes through G.

• Show that if you extend the lines GA and DB to meet at X then X lies on the red circle, and CX is a diameter of the circle.

• Show that CDXG is a parallelogram whose diagonals meet at the centre of the circle.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
3
Views
1K
Replies
2
Views
1K
Replies
4
Views
1K
Replies
6
Views
1K
Replies
1
Views
2K
Back
Top