MHB Prove that factorial n is less than or equal to n raised to n

  • Thread starter Thread starter issacnewton
  • Start date Start date
  • Tags Tags
    Factorial
Click For Summary
The discussion centers on proving that for all natural numbers n, n! is less than or equal to n^n. The proof begins by expressing n! as a product of integers from n down to 1 and demonstrating that each factor is less than or equal to n, leading to the conclusion that n! ≤ n^n. The user then seeks to apply the Squeeze theorem to find the limit of (n!)^(1/n^2), confirming that (n!)^(1/n^2) ≤ (n^n)^(1/n^2) holds true. Feedback emphasizes the need for clearer organization in the argument but affirms that the approach is fundamentally correct.
issacnewton
Messages
1,035
Reaction score
37
HelloI wish to prove that
\[ \forall\;n\in \mathbb{N}\; n! \leqslant n^n \]
First we let \(n\) be arbitrary. Now I first write \( n! \) as \( n\cdot(n-1)\cdot(n-2)\cdots 3\cdot 2\cdot 1\).
Now we see that
\[ n \geqslant (n-1)\;; n \geqslant (n-2)\;\ldots ;n \geqslant n- (n-1) \]
So we get
\[ n\cdot(n-1)\cdot(n-2)\cdots 3\cdot 2\cdot 1 \leqslant \underbrace{n\cdot n\cdot n\cdots n}_\text{n times} \]
\[ \Rightarrow n! \leqslant n^n \]
Since \(n\) is arbitrary, the result is generally true. I want to use this result to find the limit of \( (n!)^{1/n^2 } \)
using the Squeeze theorem. So is my proof correct ?
Thanks
 
Physics news on Phys.org
IssacNewton said:
HelloI wish to prove that
\[ \forall\;n\in \mathbb{N}\; n! \leqslant n^n \]
First we let \(n\) be arbitrary. Now I first write \( n! \) as \( n\cdot(n-1)\cdot(n-2)\cdots 3\cdot 2\cdot 1\).
Now we see that
\[ n \geqslant (n-1)\;; n \geqslant (n-2)\;\ldots ;n \geqslant n- (n-1) \]
So we get
\[ n\cdot(n-1)\cdot(n-2)\cdots 3\cdot 2\cdot 1 \leqslant \underbrace{n\cdot n\cdot n\cdots n}_\text{n times} \]
\[ \Rightarrow n! \leqslant n^n \]
Since \(n\) is arbitrary, the result is generally true. I want to use this result to find the limit of \( (n!)^{1/n^2 } \)
using the Squeeze theorem. So is my proof correct ?
Thanks

Yup , it is correct .
 
Thanks zaid.
Now to use squeeze theorem, one of the things I need to prove is that \( (n!)^{1/n^2} \leqslant (n^n)^{1/n^2} \). Now here is an idea how I plan to go about doing that.
I have already proven a theorem that if \( a>0 \) and \(b>0\) and \(n\in\mathbb{N} \), we have \( a< b \) if and only if \( a^n < b^n \). Since \( n! \leqslant n^n \) for all \(n\in\mathbb{N} \), we can divide this in two cases. In case 1 , where \( n! = n^n \),
taking \( 1/n^2 \) root of both the sides, we get \( (n!)^{1/n^2} = (n^n)^{1/n^2} \).
In case 2, where \( n! < n^n \), I will let \( a = (n!)^{1/n^2}\) and \( b = (n^n)^{1/n^2} \). Now since both \( n! \) and \( n^n \) are positive, by \( n^{\mbox{th}} \) root theorem, we have \( a = (n!)^{1/n^2} > 0 \) and
\( b = (n^n)^{1/n^2} > 0 \). The case 2 says that \( n! < n^n \), which is \( a^{n^2} < b^{n^2} \). Now since \( n\in\mathbb{N} \), we have \( n^2 \in\mathbb{N} \). So using the theorem I proved, we get \( a<b\) which is \( (n!)^{1/n^2} < (n^n)^{1/n^2} \). So combining the two cases, I get
\[ (n!)^{1/n^2} \leqslant (n^n)^{1/n^2} \].

Does this sound good ?

thanks
 
It is clear that you know what you are doing but you need to make things a little be more organized . For example , it is not clear from the context which implication you are choosing ! .

Let $$ a,b>0 $$ , $$a<b \iff a^{n^2}<b^{n^2}$$ . so you are choosing the converse $$ a^{n^2}<b^{n^2} \implies a< b $$ then by letting $$a= (n!)^{\frac{1}{n^2}} ,b= (n^n)^{\frac{1}{n^2}}$$ , we conclude that that $$ n! < n^n \implies (n!)^{\frac{1}{n^2}} < (n^n)^{\frac{1}{n^2}}$$ .Since you already proved the left hand side we are done .
 
Thanks...I am on right track... (Muscle)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K