MHB Prove that the sum of 6 positive integers is a composite number

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c,\,d,\,e,\,f$ be positive integers and $S=a+b+c+d+e+f$. Suppose that the number $S$ divides $abc+def$ and $ab+bc+ca-de-ef-df$, prove that $S$ is composite.
 
Mathematics news on Phys.org
All the coefficients of

$\begin{align*}f(x)&=(x+a)(x+b)(x+c)-(x-d)(x-e)(x-f)\\&=Sx^2+(ab+bc+ca-de-ef-fd)x+(abc+def)\end{align*}$

are multiples of $S$. Evaluating $f$ at $d$, we get that $f(d)=(a+d)(b+d)(c+d)$ is a multiple of $S$.

So this implies that $S$ is composite, since $a+d,\,b+d,\,c+d$ are all strictly less than $S$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top