MHB Prove that the sum of 6 positive integers is a composite number

Click For Summary
The discussion revolves around proving that the sum of six positive integers, denoted as S, is a composite number under specific conditions. It is established that S divides both the expression abc + def and the expression ab + bc + ca - de - ef - df. The implications of these divisibility conditions suggest that S cannot be a prime number. The proof hinges on demonstrating that the structure of these equations leads to a contradiction if S were prime. Therefore, it is concluded that S must be composite.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c,\,d,\,e,\,f$ be positive integers and $S=a+b+c+d+e+f$. Suppose that the number $S$ divides $abc+def$ and $ab+bc+ca-de-ef-df$, prove that $S$ is composite.
 
Mathematics news on Phys.org
All the coefficients of

$\begin{align*}f(x)&=(x+a)(x+b)(x+c)-(x-d)(x-e)(x-f)\\&=Sx^2+(ab+bc+ca-de-ef-fd)x+(abc+def)\end{align*}$

are multiples of $S$. Evaluating $f$ at $d$, we get that $f(d)=(a+d)(b+d)(c+d)$ is a multiple of $S$.

So this implies that $S$ is composite, since $a+d,\,b+d,\,c+d$ are all strictly less than $S$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K