Prove the following zeta property :

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Property
Click For Summary
SUMMARY

The discussion centers on proving the zeta property, specifically the equation $$ \zeta(s) = s \int^{\infty}_1 \,\frac{ [ t ] }{t^{s+1}} \, =\,\frac{s}{s-1} \, -s \int^{\infty}_1 \frac{ \{ t \} } {t^{s+1}}\,dt $$ using the Abel summation formula. Balarka demonstrates the application of this formula by setting $$a_n = 1$$, $$\phi(x) = \frac{1}{x^s}$$, and $$A(x) = \lfloor x \rfloor$$. The proof involves computing the integral and simplifying it to show that $$\int_{1}^{\infty} \frac{[t]}{t^{s+1}}\ dt$$ equals $$\frac{\zeta(s)}{s}$$.

PREREQUISITES
  • Understanding of the Riemann zeta function, $$\zeta(s)$$
  • Familiarity with the Abel summation formula
  • Knowledge of integral calculus, specifically improper integrals
  • Basic concepts of floor and fractional functions, $$\lfloor x \rfloor$$ and $$\{ x \}$$
NEXT STEPS
  • Study the properties and applications of the Riemann zeta function
  • Explore the Abel summation formula in depth
  • Learn techniques for evaluating improper integrals
  • Investigate the relationship between floor and fractional functions in mathematical analysis
USEFUL FOR

Mathematicians, students of advanced calculus, and researchers interested in number theory and the properties of the Riemann zeta function.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$ \zeta(s) = s \int^{\infty}_1 \,\frac{ [ t ] }{t^{s+1}} \, =\,\frac{s}{s-1} \, -s \int^{\infty}_1 \frac{ \{ t \} } {t^{s+1}}\,dt $$
 
Physics news on Phys.org
Hi Zaid,

This is just a special case of Abel summation formula,

$$\sum_{1 \le n \le x} a_n \phi(n) = A(x)\phi(x) - \int_1^x A(u)\phi'(u) \, \mathrm{d}u \,$$

Put $$a_n = 1$$, $$\phi(x) = \frac{1}{x^s}$$ and $$A(x) = \lfloor x \rfloor$$

Hope this helps,

Balarka
.
 
ZaidAlyafey said:
$$ \zeta(s) = s \int^{\infty}_1 \,\frac{ [ t ] }{t^{s+1}} \, =\,\frac{s}{s-1} \, -s \int^{\infty}_1 \frac{ \{ t \} } {t^{s+1}}\,dt $$

The first equality can be proved computing the integral...

$\displaystyle \int_{1}^{\infty} \frac{[t]}{t^{s+1}}\ dt = \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{n}{t^{s+1}}\ dt = \frac{1}{s}\ \sum_{n=1}^{\infty} n \{- \frac{1}{(n+1)^{s}} + \frac{1}{n^{s}}\} = \frac{\zeta(s)}{s}$

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
3K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 29 ·
Replies
29
Views
3K