Prove the nested radicals identity √(n−√(n+√(n−√(n+....

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Identity Radicals
Click For Summary
SUMMARY

The nested radicals identity is proven as follows: for all integers \( n \geq 1 \), the equation \(\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\) holds true. This identity demonstrates the equivalence of two infinite nested radical expressions. The proof relies on the properties of convergence in nested radicals and the manipulation of algebraic identities. Participants in the discussion confirmed the validity of the solution, highlighting its correctness and elegance.

PREREQUISITES
  • Understanding of nested radicals and their convergence properties
  • Familiarity with algebraic manipulation techniques
  • Basic knowledge of mathematical induction
  • Experience with infinite series and limits
NEXT STEPS
  • Study the convergence of nested radicals in detail
  • Explore mathematical induction techniques for proving identities
  • Investigate other forms of infinite series and their properties
  • Learn about advanced algebraic identities and their applications
USEFUL FOR

Mathematicians, students of mathematics, and anyone interested in advanced algebraic concepts and proofs involving nested radicals.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the following identity ($n = 1,2,3,...$):

\[\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\]
 
Mathematics news on Phys.org
lfdahl said:
Prove the following identity ($n = 1,2,3,...$):

\[\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\]

$\displaystyle \begin{align*} x &= \sqrt{n - \sqrt{n + \sqrt{n - \sqrt{n + \sqrt{ \dots } }}}} \\ x^2 &= n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{\dots }}}} \\ x^2 - n &= - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } } }} \\ \left( x^2 - n \right) ^2 &= n + \sqrt{ n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } }}}} \\ \left( x^2 - n \right) ^2 - n &= \sqrt{ n -
\sqrt{n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots }}}}} \\ \left( x^2 - n \right) ^2 - n &= x \end{align*}$

Next:

$\displaystyle \begin{align*} y &= \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}}} \\ y^2 &= n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}} \\ y^2 &= n - 1 - y \\ y^2 + y &= n - 1 \\ y^2 + y + \left( \frac{1}{2} \right) ^2 &= n - 1 + \left( \frac{1}{2} \right) ^2 \\ \left( y + \frac{1}{2} \right) ^2 &= n - \frac{3}{4} \\ y + \frac{1}{2} &= \frac{\pm \sqrt{ 4\,n - 3 }}{2} \\ y &= \frac{-1 \pm \sqrt{ 4\,n - 3 }}{2} \end{align*}$

As $\displaystyle \begin{align*} y > 0 \end{align*}$ that means $\displaystyle \begin{align*} y = \frac{-1 + \sqrt{ 4\,n -3}}{2} \end{align*}$, now we need to check if $\displaystyle \begin{align*} x = y \end{align*}$...

$\displaystyle \begin{align*} \left( y^2 - n \right) ^2 - n &= \left[ \left( \frac{-1 + \sqrt{4\,n - 3}}{2} \right) ^2 - n \right] ^2 - n \\ &= \left( \frac{1 - 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \right) ^2 - n \\ &= \left( \frac{4\, n - 2 - 2\,\sqrt{ 4\,n - 3 }}{4} - n \right) ^2 - n \\ &= \left( \frac{ 2\,n - 1 - \sqrt{ 4\,n - 3}}{2} - n \right) ^2 - n \\ &= \left( \frac{-1 - \sqrt{4\,n - 3}}{2} \right) ^2 - n \\ &= \frac{1 + 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \\ &= \frac{4\, n- 2 + 2\,\sqrt{4\,n - 3} }{4} - n \\ &= \frac{2\,n - 1 + \sqrt{4\,n - 3 }}{2} - n \\ &= \frac{-1 + \sqrt{4\,n - 3}}{2} \\ &= y \end{align*}$

which satisfies $\displaystyle \begin{align*} \left( x^2 - n \right) ^2 - n = x \end{align*}$. Thus the identity holds.
 
Last edited by a moderator:
let LHS = b
so we get $b= \sqrt{n-\sqrt{n+b}}$ or $b^2 = n- \sqrt{n+b}$
or $(b^2-n)^2 = n+ b\cdots(1)$
let RHS be a
we have $a^2 = n- 1-a$
or $a^2 -n = -(a+1)\cdots(2)$
we need to show that a satisfies (1)
square (2) to get
$(a^2-n)^2 = (a+1)^2 = a^2 + 2a + 1 = n- (a+1) + 2a + 1 = n + a$
so a and b satisfy (1)
and there is only one value of a which is positive hence they are same
 
Prove It said:
$\displaystyle \begin{align*} x &= \sqrt{n - \sqrt{n + \sqrt{n - \sqrt{n + \sqrt{ \dots } }}}} \\ x^2 &= n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{\dots }}}} \\ x^2 - n &= - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } } }} \\ \left( x^2 - n \right) ^2 &= n + \sqrt{ n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } }}}} \\ \left( x^2 - n \right) ^2 - n &= \sqrt{ n -
\sqrt{n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots }}}}} \\ \left( x^2 - n \right) ^2 - n &= x \end{align*}$

Next:

$\displaystyle \begin{align*} y &= \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}}} \\ y^2 &= n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}} \\ y^2 &= n - 1 - y \\ y^2 + y &= n - 1 \\ y^2 + y + \left( \frac{1}{2} \right) ^2 &= n - 1 + \left( \frac{1}{2} \right) ^2 \\ \left( y + \frac{1}{2} \right) ^2 &= n - \frac{3}{4} \\ y + \frac{1}{2} &= \frac{\pm \sqrt{ 4\,n - 3 }}{2} \\ y &= \frac{-1 \pm \sqrt{ 4\,n - 3 }}{2} \end{align*}$

As $\displaystyle \begin{align*} y > 0 \end{align*}$ that means $\displaystyle \begin{align*} y = \frac{-1 + \sqrt{ 4\,n -3}}{2} \end{align*}$, now we need to check if $\displaystyle \begin{align*} x = y \end{align*}$...

$\displaystyle \begin{align*} \left( y^2 - n \right) ^2 - n &= \left[ \left( \frac{-1 + \sqrt{4\,n - 3}}{2} \right) ^2 - n \right] ^2 - n \\ &= \left( \frac{1 - 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \right) ^2 - n \\ &= \left( \frac{4\, n - 2 - 2\,\sqrt{ 4\,n - 3 }}{4} - n \right) ^2 - n \\ &= \left( \frac{ 2\,n - 1 - \sqrt{ 4\,n - 3}}{2} - n \right) ^2 - n \\ &= \left( \frac{-1 - \sqrt{4\,n - 3}}{2} \right) ^2 - n \\ &= \frac{1 + 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \\ &= \frac{4\, n- 2 + 2\,\sqrt{4\,n - 3} }{4} - n \\ &= \frac{2\,n - 1 + \sqrt{4\,n - 3 }}{2} - n \\ &= \frac{-1 + \sqrt{4\,n - 3}}{2} \\ &= y \end{align*}$

which satisfies $\displaystyle \begin{align*} \left( x^2 - n \right) ^2 - n = x \end{align*}$. Thus the identity holds.

Good job, Prove It! Thankyou for your participation. (Yes)
 
kaliprasad said:
let LHS = b
so we get $b= \sqrt{n-\sqrt{n+b}}$ or $b^2 = n- \sqrt{n+b}$
or $(b^2-n)^2 = n+ b\cdots(1)$
let RHS be a
we have $a^2 = n- 1-a$
or $a^2 -n = -(a+1)\cdots(2)$
we need to show that a satisfies (1)
square (2) to get
$(a^2-n)^2 = (a+1)^2 = a^2 + 2a + 1 = n- (a+1) + 2a + 1 = n + a$
so a and b satisfy (1)
and there is only one value of a which is positive hence they are same

What a smart solution!(Cool) Thankyou, kaliprasad for your participation!
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
984
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
814
Replies
1
Views
1K