$\displaystyle \begin{align*} x &= \sqrt{n - \sqrt{n + \sqrt{n - \sqrt{n + \sqrt{ \dots } }}}} \\ x^2 &= n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{\dots }}}} \\ x^2 - n &= - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } } }} \\ \left( x^2 - n \right) ^2 &= n + \sqrt{ n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } }}}} \\ \left( x^2 - n \right) ^2 - n &= \sqrt{ n -
\sqrt{n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots }}}}} \\ \left( x^2 - n \right) ^2 - n &= x \end{align*}$
Next:
$\displaystyle \begin{align*} y &= \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}}} \\ y^2 &= n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}} \\ y^2 &= n - 1 - y \\ y^2 + y &= n - 1 \\ y^2 + y + \left( \frac{1}{2} \right) ^2 &= n - 1 + \left( \frac{1}{2} \right) ^2 \\ \left( y + \frac{1}{2} \right) ^2 &= n - \frac{3}{4} \\ y + \frac{1}{2} &= \frac{\pm \sqrt{ 4\,n - 3 }}{2} \\ y &= \frac{-1 \pm \sqrt{ 4\,n - 3 }}{2} \end{align*}$
As $\displaystyle \begin{align*} y > 0 \end{align*}$ that means $\displaystyle \begin{align*} y = \frac{-1 + \sqrt{ 4\,n -3}}{2} \end{align*}$, now we need to check if $\displaystyle \begin{align*} x = y \end{align*}$...
$\displaystyle \begin{align*} \left( y^2 - n \right) ^2 - n &= \left[ \left( \frac{-1 + \sqrt{4\,n - 3}}{2} \right) ^2 - n \right] ^2 - n \\ &= \left( \frac{1 - 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \right) ^2 - n \\ &= \left( \frac{4\, n - 2 - 2\,\sqrt{ 4\,n - 3 }}{4} - n \right) ^2 - n \\ &= \left( \frac{ 2\,n - 1 - \sqrt{ 4\,n - 3}}{2} - n \right) ^2 - n \\ &= \left( \frac{-1 - \sqrt{4\,n - 3}}{2} \right) ^2 - n \\ &= \frac{1 + 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \\ &= \frac{4\, n- 2 + 2\,\sqrt{4\,n - 3} }{4} - n \\ &= \frac{2\,n - 1 + \sqrt{4\,n - 3 }}{2} - n \\ &= \frac{-1 + \sqrt{4\,n - 3}}{2} \\ &= y \end{align*}$
which satisfies $\displaystyle \begin{align*} \left( x^2 - n \right) ^2 - n = x \end{align*}$. Thus the identity holds.