MHB Prove the nested radicals identity √(n−√(n+√(n−√(n+....

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Identity Radicals
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the following identity ($n = 1,2,3,...$):

\[\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\]
 
Mathematics news on Phys.org
lfdahl said:
Prove the following identity ($n = 1,2,3,...$):

\[\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\]

$\displaystyle \begin{align*} x &= \sqrt{n - \sqrt{n + \sqrt{n - \sqrt{n + \sqrt{ \dots } }}}} \\ x^2 &= n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{\dots }}}} \\ x^2 - n &= - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } } }} \\ \left( x^2 - n \right) ^2 &= n + \sqrt{ n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } }}}} \\ \left( x^2 - n \right) ^2 - n &= \sqrt{ n -
\sqrt{n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots }}}}} \\ \left( x^2 - n \right) ^2 - n &= x \end{align*}$

Next:

$\displaystyle \begin{align*} y &= \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}}} \\ y^2 &= n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}} \\ y^2 &= n - 1 - y \\ y^2 + y &= n - 1 \\ y^2 + y + \left( \frac{1}{2} \right) ^2 &= n - 1 + \left( \frac{1}{2} \right) ^2 \\ \left( y + \frac{1}{2} \right) ^2 &= n - \frac{3}{4} \\ y + \frac{1}{2} &= \frac{\pm \sqrt{ 4\,n - 3 }}{2} \\ y &= \frac{-1 \pm \sqrt{ 4\,n - 3 }}{2} \end{align*}$

As $\displaystyle \begin{align*} y > 0 \end{align*}$ that means $\displaystyle \begin{align*} y = \frac{-1 + \sqrt{ 4\,n -3}}{2} \end{align*}$, now we need to check if $\displaystyle \begin{align*} x = y \end{align*}$...

$\displaystyle \begin{align*} \left( y^2 - n \right) ^2 - n &= \left[ \left( \frac{-1 + \sqrt{4\,n - 3}}{2} \right) ^2 - n \right] ^2 - n \\ &= \left( \frac{1 - 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \right) ^2 - n \\ &= \left( \frac{4\, n - 2 - 2\,\sqrt{ 4\,n - 3 }}{4} - n \right) ^2 - n \\ &= \left( \frac{ 2\,n - 1 - \sqrt{ 4\,n - 3}}{2} - n \right) ^2 - n \\ &= \left( \frac{-1 - \sqrt{4\,n - 3}}{2} \right) ^2 - n \\ &= \frac{1 + 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \\ &= \frac{4\, n- 2 + 2\,\sqrt{4\,n - 3} }{4} - n \\ &= \frac{2\,n - 1 + \sqrt{4\,n - 3 }}{2} - n \\ &= \frac{-1 + \sqrt{4\,n - 3}}{2} \\ &= y \end{align*}$

which satisfies $\displaystyle \begin{align*} \left( x^2 - n \right) ^2 - n = x \end{align*}$. Thus the identity holds.
 
Last edited by a moderator:
let LHS = b
so we get $b= \sqrt{n-\sqrt{n+b}}$ or $b^2 = n- \sqrt{n+b}$
or $(b^2-n)^2 = n+ b\cdots(1)$
let RHS be a
we have $a^2 = n- 1-a$
or $a^2 -n = -(a+1)\cdots(2)$
we need to show that a satisfies (1)
square (2) to get
$(a^2-n)^2 = (a+1)^2 = a^2 + 2a + 1 = n- (a+1) + 2a + 1 = n + a$
so a and b satisfy (1)
and there is only one value of a which is positive hence they are same
 
Prove It said:
$\displaystyle \begin{align*} x &= \sqrt{n - \sqrt{n + \sqrt{n - \sqrt{n + \sqrt{ \dots } }}}} \\ x^2 &= n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{\dots }}}} \\ x^2 - n &= - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } } }} \\ \left( x^2 - n \right) ^2 &= n + \sqrt{ n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } }}}} \\ \left( x^2 - n \right) ^2 - n &= \sqrt{ n -
\sqrt{n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots }}}}} \\ \left( x^2 - n \right) ^2 - n &= x \end{align*}$

Next:

$\displaystyle \begin{align*} y &= \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}}} \\ y^2 &= n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}} \\ y^2 &= n - 1 - y \\ y^2 + y &= n - 1 \\ y^2 + y + \left( \frac{1}{2} \right) ^2 &= n - 1 + \left( \frac{1}{2} \right) ^2 \\ \left( y + \frac{1}{2} \right) ^2 &= n - \frac{3}{4} \\ y + \frac{1}{2} &= \frac{\pm \sqrt{ 4\,n - 3 }}{2} \\ y &= \frac{-1 \pm \sqrt{ 4\,n - 3 }}{2} \end{align*}$

As $\displaystyle \begin{align*} y > 0 \end{align*}$ that means $\displaystyle \begin{align*} y = \frac{-1 + \sqrt{ 4\,n -3}}{2} \end{align*}$, now we need to check if $\displaystyle \begin{align*} x = y \end{align*}$...

$\displaystyle \begin{align*} \left( y^2 - n \right) ^2 - n &= \left[ \left( \frac{-1 + \sqrt{4\,n - 3}}{2} \right) ^2 - n \right] ^2 - n \\ &= \left( \frac{1 - 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \right) ^2 - n \\ &= \left( \frac{4\, n - 2 - 2\,\sqrt{ 4\,n - 3 }}{4} - n \right) ^2 - n \\ &= \left( \frac{ 2\,n - 1 - \sqrt{ 4\,n - 3}}{2} - n \right) ^2 - n \\ &= \left( \frac{-1 - \sqrt{4\,n - 3}}{2} \right) ^2 - n \\ &= \frac{1 + 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \\ &= \frac{4\, n- 2 + 2\,\sqrt{4\,n - 3} }{4} - n \\ &= \frac{2\,n - 1 + \sqrt{4\,n - 3 }}{2} - n \\ &= \frac{-1 + \sqrt{4\,n - 3}}{2} \\ &= y \end{align*}$

which satisfies $\displaystyle \begin{align*} \left( x^2 - n \right) ^2 - n = x \end{align*}$. Thus the identity holds.

Good job, Prove It! Thankyou for your participation. (Yes)
 
kaliprasad said:
let LHS = b
so we get $b= \sqrt{n-\sqrt{n+b}}$ or $b^2 = n- \sqrt{n+b}$
or $(b^2-n)^2 = n+ b\cdots(1)$
let RHS be a
we have $a^2 = n- 1-a$
or $a^2 -n = -(a+1)\cdots(2)$
we need to show that a satisfies (1)
square (2) to get
$(a^2-n)^2 = (a+1)^2 = a^2 + 2a + 1 = n- (a+1) + 2a + 1 = n + a$
so a and b satisfy (1)
and there is only one value of a which is positive hence they are same

What a smart solution!(Cool) Thankyou, kaliprasad for your participation!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top