MHB Prove the nested radicals identity √(n−√(n+√(n−√(n+....

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Identity Radicals
Click For Summary
The discussion centers on proving the identity involving nested radicals for natural numbers n. Participants engage in verifying the equality between two expressions that involve infinite nested square roots. The identity simplifies to show that both sides converge to the same value under the specified conditions. Contributions highlight various approaches and insights into the proof. The conversation concludes with appreciation for the solutions provided by participants.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the following identity ($n = 1,2,3,...$):

\[\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\]
 
Mathematics news on Phys.org
lfdahl said:
Prove the following identity ($n = 1,2,3,...$):

\[\sqrt{n - \sqrt{n+\sqrt{n-\sqrt{n +...}}}} = \sqrt{(n-1)-\sqrt{(n-1)-\sqrt{(n-1)-...}}}\]

$\displaystyle \begin{align*} x &= \sqrt{n - \sqrt{n + \sqrt{n - \sqrt{n + \sqrt{ \dots } }}}} \\ x^2 &= n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{\dots }}}} \\ x^2 - n &= - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } } }} \\ \left( x^2 - n \right) ^2 &= n + \sqrt{ n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } }}}} \\ \left( x^2 - n \right) ^2 - n &= \sqrt{ n -
\sqrt{n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots }}}}} \\ \left( x^2 - n \right) ^2 - n &= x \end{align*}$

Next:

$\displaystyle \begin{align*} y &= \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}}} \\ y^2 &= n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}} \\ y^2 &= n - 1 - y \\ y^2 + y &= n - 1 \\ y^2 + y + \left( \frac{1}{2} \right) ^2 &= n - 1 + \left( \frac{1}{2} \right) ^2 \\ \left( y + \frac{1}{2} \right) ^2 &= n - \frac{3}{4} \\ y + \frac{1}{2} &= \frac{\pm \sqrt{ 4\,n - 3 }}{2} \\ y &= \frac{-1 \pm \sqrt{ 4\,n - 3 }}{2} \end{align*}$

As $\displaystyle \begin{align*} y > 0 \end{align*}$ that means $\displaystyle \begin{align*} y = \frac{-1 + \sqrt{ 4\,n -3}}{2} \end{align*}$, now we need to check if $\displaystyle \begin{align*} x = y \end{align*}$...

$\displaystyle \begin{align*} \left( y^2 - n \right) ^2 - n &= \left[ \left( \frac{-1 + \sqrt{4\,n - 3}}{2} \right) ^2 - n \right] ^2 - n \\ &= \left( \frac{1 - 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \right) ^2 - n \\ &= \left( \frac{4\, n - 2 - 2\,\sqrt{ 4\,n - 3 }}{4} - n \right) ^2 - n \\ &= \left( \frac{ 2\,n - 1 - \sqrt{ 4\,n - 3}}{2} - n \right) ^2 - n \\ &= \left( \frac{-1 - \sqrt{4\,n - 3}}{2} \right) ^2 - n \\ &= \frac{1 + 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \\ &= \frac{4\, n- 2 + 2\,\sqrt{4\,n - 3} }{4} - n \\ &= \frac{2\,n - 1 + \sqrt{4\,n - 3 }}{2} - n \\ &= \frac{-1 + \sqrt{4\,n - 3}}{2} \\ &= y \end{align*}$

which satisfies $\displaystyle \begin{align*} \left( x^2 - n \right) ^2 - n = x \end{align*}$. Thus the identity holds.
 
Last edited by a moderator:
let LHS = b
so we get $b= \sqrt{n-\sqrt{n+b}}$ or $b^2 = n- \sqrt{n+b}$
or $(b^2-n)^2 = n+ b\cdots(1)$
let RHS be a
we have $a^2 = n- 1-a$
or $a^2 -n = -(a+1)\cdots(2)$
we need to show that a satisfies (1)
square (2) to get
$(a^2-n)^2 = (a+1)^2 = a^2 + 2a + 1 = n- (a+1) + 2a + 1 = n + a$
so a and b satisfy (1)
and there is only one value of a which is positive hence they are same
 
Prove It said:
$\displaystyle \begin{align*} x &= \sqrt{n - \sqrt{n + \sqrt{n - \sqrt{n + \sqrt{ \dots } }}}} \\ x^2 &= n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{\dots }}}} \\ x^2 - n &= - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } } }} \\ \left( x^2 - n \right) ^2 &= n + \sqrt{ n - \sqrt{ n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots } }}}} \\ \left( x^2 - n \right) ^2 - n &= \sqrt{ n -
\sqrt{n + \sqrt{ n - \sqrt{ n + \sqrt{ \dots }}}}} \\ \left( x^2 - n \right) ^2 - n &= x \end{align*}$

Next:

$\displaystyle \begin{align*} y &= \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}}} \\ y^2 &= n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ n - 1 - \sqrt{ \dots }}}} \\ y^2 &= n - 1 - y \\ y^2 + y &= n - 1 \\ y^2 + y + \left( \frac{1}{2} \right) ^2 &= n - 1 + \left( \frac{1}{2} \right) ^2 \\ \left( y + \frac{1}{2} \right) ^2 &= n - \frac{3}{4} \\ y + \frac{1}{2} &= \frac{\pm \sqrt{ 4\,n - 3 }}{2} \\ y &= \frac{-1 \pm \sqrt{ 4\,n - 3 }}{2} \end{align*}$

As $\displaystyle \begin{align*} y > 0 \end{align*}$ that means $\displaystyle \begin{align*} y = \frac{-1 + \sqrt{ 4\,n -3}}{2} \end{align*}$, now we need to check if $\displaystyle \begin{align*} x = y \end{align*}$...

$\displaystyle \begin{align*} \left( y^2 - n \right) ^2 - n &= \left[ \left( \frac{-1 + \sqrt{4\,n - 3}}{2} \right) ^2 - n \right] ^2 - n \\ &= \left( \frac{1 - 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \right) ^2 - n \\ &= \left( \frac{4\, n - 2 - 2\,\sqrt{ 4\,n - 3 }}{4} - n \right) ^2 - n \\ &= \left( \frac{ 2\,n - 1 - \sqrt{ 4\,n - 3}}{2} - n \right) ^2 - n \\ &= \left( \frac{-1 - \sqrt{4\,n - 3}}{2} \right) ^2 - n \\ &= \frac{1 + 2\,\sqrt{4\,n - 3} + 4\,n - 3}{4} - n \\ &= \frac{4\, n- 2 + 2\,\sqrt{4\,n - 3} }{4} - n \\ &= \frac{2\,n - 1 + \sqrt{4\,n - 3 }}{2} - n \\ &= \frac{-1 + \sqrt{4\,n - 3}}{2} \\ &= y \end{align*}$

which satisfies $\displaystyle \begin{align*} \left( x^2 - n \right) ^2 - n = x \end{align*}$. Thus the identity holds.

Good job, Prove It! Thankyou for your participation. (Yes)
 
kaliprasad said:
let LHS = b
so we get $b= \sqrt{n-\sqrt{n+b}}$ or $b^2 = n- \sqrt{n+b}$
or $(b^2-n)^2 = n+ b\cdots(1)$
let RHS be a
we have $a^2 = n- 1-a$
or $a^2 -n = -(a+1)\cdots(2)$
we need to show that a satisfies (1)
square (2) to get
$(a^2-n)^2 = (a+1)^2 = a^2 + 2a + 1 = n- (a+1) + 2a + 1 = n + a$
so a and b satisfy (1)
and there is only one value of a which is positive hence they are same

What a smart solution!(Cool) Thankyou, kaliprasad for your participation!
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
17
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
926
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
10
Views
2K
Replies
3
Views
2K