MHB Prove the sum is greater than or equal to one half

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be positive real numbers for which $a+ b + c = 1$.

Prove that $$ \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.$$
 
Mathematics news on Phys.org
My solution:

Let:

$$f(a,b,c)=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}$$

By cyclic symmetry, we see that the extremum occurs at:

$$(a,b,c)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$$

And we find:

$$f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{2}$$

Choosing another point on the constraint, such as:

$$(a,b,c)=\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)$$

We find:

$$f\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)=\frac{3}{4}>\frac{1}{2}$$

Hence, we may conclude:

$$f_{\min}=\frac{1}{2}$$
 
MarkFL said:
My solution:

Let:

$$f(a,b,c)=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}$$

By cyclic symmetry, we see that the extremum occurs at:

$$(a,b,c)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$$

And we find:

$$f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{2}$$

Choosing another point on the constraint, such as:

$$(a,b,c)=\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)$$

We find:

$$f\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)=\frac{3}{4}>\frac{1}{2}$$

Hence, we may conclude:

$$f_{\min}=\frac{1}{2}$$

Very good, MarkFL!(Cool) And thanks for participating!
 
My solution:

WLOG we can let $a \ge b \ge c$, and we get:

\[\frac{1}{b^2+c^2} \geq \frac{1}{a^2+c^2}\geq \frac{1}{a^2+b^2}\]Repeated use of Chebyschevs Sum Inequality:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq 9\underbrace{(a+b+c)}_{=1} \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\\\\ 9 \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\geq 3\underbrace{(a+b+c)}_{=1} \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right ) \\\\ 3 \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right )\geq \underbrace{(a+b+c)}_{=1} \left ( \frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \right )\]Using the Arithmetic Harmonic Mean Inequality:\[\frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \geq \frac{9}{2(a^2+b^2+c^2)}\]So far, we´ve got the relation:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\]The denominator $a^2+b^2+c^2$ obeys the inequality (Chebyschev once again):\[3(a^2+b^2+c^2) \geq (a+b+c)(a+b+c)=1 \Rightarrow \frac{1}{a^2+b^2+c^2}\leq 3\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}\]
Thus, we have:\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
 
Very well done, lfdahl, and thanks for participating!(Cool)
 
lfdahl said:
My solution:

WLOG we can let $a \ge b \ge c$, and we get:

\[\frac{1}{b^2+c^2} \geq \frac{1}{a^2+c^2}\geq \frac{1}{a^2+b^2}\]Repeated use of Chebyschevs Sum Inequality:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq 9\underbrace{(a+b+c)}_{=1} \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\\\\ 9 \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\geq 3\underbrace{(a+b+c)}_{=1} \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right ) \\\\ 3 \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right )\geq \underbrace{(a+b+c)}_{=1} \left ( \frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \right )\]Using the Arithmetic Harmonic Mean Inequality:\[\frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \geq \frac{9}{2(a^2+b^2+c^2)}\]So far, we´ve got the relation:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\]The denominator $a^2+b^2+c^2$ obeys the inequality (Chebyschev once again):\[3(a^2+b^2+c^2) \geq (a+b+c)(a+b+c)=1 \Rightarrow \frac{1}{a^2+b^2+c^2}\leq 3\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:
\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
a question in (*)
if $x\geq y \geq z$ then $x\geq z$ there is no doubt
but if $x\geq y \leq z$ then $x\geq z$ is not always true
 
anemone said:
Let $a,\,b$ and $c$ be positive real numbers for which $a+ b + c = 1$.

Prove that $$ \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.$$

[sp]Why not use the AM-GM inequality?

$$a+b+c=1,\quad a,b,c>0 \\\Leftrightarrow\dfrac{a^3}{b^2+c^2}=\dfrac{b^3}{c^2+a^2}=\dfrac{c^3}{a^2+b^2}\Rightarrow a=b=c=\dfrac13$$

$$f(a,b,c)=\dfrac{a^3}{b^2+c^2}+\dfrac{b^3}{c^2+a^2}+\dfrac{c^3}{a^2+b^2}$$

$$\min(f(a,b,c))=3\sqrt[3]{\dfrac{\left(\dfrac13\right)^9}{8\left(\dfrac13\right)^6}}=\dfrac12$$[/sp]
 
Albert said:
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:
\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
a question in (*)
if $x\geq y \geq z$ then $x\geq z$ there is no doubt
but if $x\geq y \leq z$ then $x\geq z$ is not always true

Hi, Albert!

You´re absolutely right: The implication: $x \ge\ y \le z \Rightarrow x\ge z $ is not always true!
Therefore, my solution is not "bullet proof". I´m sorry for having delivered a dubious answer :o
 
Last edited:
lfdahl said:
Hi, Albert!

You´re absolutely right: The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!
Therefore, my solution is not "bullet proof". I´m sorry for having delivered a dubious answer :o
The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!

it should be :
$x \ge\ y \le z \Rightarrow x\ge z $ is not always true!
 
  • #10
Albert said:
The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!

it should be :
$x \ge\ y \le z \Rightarrow x\ge z $ is not always true!

You´re right again :o
 

Similar threads

Replies
10
Views
943
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
1
Views
834
Back
Top