Prove the sum is greater than or equal to one half

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary

Discussion Overview

The discussion revolves around proving the inequality involving positive real numbers \(a\), \(b\), and \(c\) such that \(a + b + c = 1\). The specific inequality to be proven is $$ \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.$$ The scope includes mathematical reasoning and exploration of potential proofs.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose using the AM-GM inequality to approach the proof, suggesting that setting \(a = b = c = \frac{1}{3}\) might simplify the problem.
  • One participant presents a solution that involves calculating the minimum of the function \(f(a,b,c)\) defined as $$f(a,b,c)=\dfrac{a^3}{b^2+c^2}+\dfrac{b^3}{c^2+a^2}+\dfrac{c^3}{a^2+b^2}$$ and arrives at a minimum value of \(\frac{1}{2}\).
  • Several participants share their solutions without providing detailed explanations or justifications, indicating a variety of approaches or methods being considered.

Areas of Agreement / Disagreement

Participants have not reached a consensus on the proof, and multiple competing views and methods remain present in the discussion.

Contextual Notes

Some solutions lack detailed steps or assumptions, and there may be unresolved mathematical steps in the proposed approaches.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b$ and $c$ be positive real numbers for which $a+ b + c = 1$.

Prove that $$ \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.$$
 
Mathematics news on Phys.org
My solution:

Let:

$$f(a,b,c)=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}$$

By cyclic symmetry, we see that the extremum occurs at:

$$(a,b,c)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$$

And we find:

$$f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{2}$$

Choosing another point on the constraint, such as:

$$(a,b,c)=\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)$$

We find:

$$f\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)=\frac{3}{4}>\frac{1}{2}$$

Hence, we may conclude:

$$f_{\min}=\frac{1}{2}$$
 
MarkFL said:
My solution:

Let:

$$f(a,b,c)=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}$$

By cyclic symmetry, we see that the extremum occurs at:

$$(a,b,c)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$$

And we find:

$$f\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)=\frac{1}{2}$$

Choosing another point on the constraint, such as:

$$(a,b,c)=\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)$$

We find:

$$f\left(\frac{1}{4},\frac{1}{4},\frac{1}{2}\right)=\frac{3}{4}>\frac{1}{2}$$

Hence, we may conclude:

$$f_{\min}=\frac{1}{2}$$

Very good, MarkFL!(Cool) And thanks for participating!
 
My solution:

WLOG we can let $a \ge b \ge c$, and we get:

\[\frac{1}{b^2+c^2} \geq \frac{1}{a^2+c^2}\geq \frac{1}{a^2+b^2}\]Repeated use of Chebyschevs Sum Inequality:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq 9\underbrace{(a+b+c)}_{=1} \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\\\\ 9 \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\geq 3\underbrace{(a+b+c)}_{=1} \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right ) \\\\ 3 \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right )\geq \underbrace{(a+b+c)}_{=1} \left ( \frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \right )\]Using the Arithmetic Harmonic Mean Inequality:\[\frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \geq \frac{9}{2(a^2+b^2+c^2)}\]So far, we´ve got the relation:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\]The denominator $a^2+b^2+c^2$ obeys the inequality (Chebyschev once again):\[3(a^2+b^2+c^2) \geq (a+b+c)(a+b+c)=1 \Rightarrow \frac{1}{a^2+b^2+c^2}\leq 3\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}\]
Thus, we have:\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
 
Very well done, lfdahl, and thanks for participating!(Cool)
 
lfdahl said:
My solution:

WLOG we can let $a \ge b \ge c$, and we get:

\[\frac{1}{b^2+c^2} \geq \frac{1}{a^2+c^2}\geq \frac{1}{a^2+b^2}\]Repeated use of Chebyschevs Sum Inequality:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq 9\underbrace{(a+b+c)}_{=1} \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\\\\ 9 \left ( \frac{a^2}{b^2+c^2} + \frac{b^2}{a^2+c^2} + \frac{c^2}{a^2+b^2} \right )\geq 3\underbrace{(a+b+c)}_{=1} \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right ) \\\\ 3 \left ( \frac{a}{b^2+c^2} + \frac{b}{a^2+c^2} + \frac{c}{a^2+b^2} \right )\geq \underbrace{(a+b+c)}_{=1} \left ( \frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \right )\]Using the Arithmetic Harmonic Mean Inequality:\[\frac{1}{b^2+c^2} + \frac{1}{a^2+c^2} + \frac{1}{a^2+b^2} \geq \frac{9}{2(a^2+b^2+c^2)}\]So far, we´ve got the relation:\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\]The denominator $a^2+b^2+c^2$ obeys the inequality (Chebyschev once again):\[3(a^2+b^2+c^2) \geq (a+b+c)(a+b+c)=1 \Rightarrow \frac{1}{a^2+b^2+c^2}\leq 3\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:
\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
a question in (*)
if $x\geq y \geq z$ then $x\geq z$ there is no doubt
but if $x\geq y \leq z$ then $x\geq z$ is not always true
 
anemone said:
Let $a,\,b$ and $c$ be positive real numbers for which $a+ b + c = 1$.

Prove that $$ \frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge \frac{1}{2}.$$

[sp]Why not use the AM-GM inequality?

$$a+b+c=1,\quad a,b,c>0 \\\Leftrightarrow\dfrac{a^3}{b^2+c^2}=\dfrac{b^3}{c^2+a^2}=\dfrac{c^3}{a^2+b^2}\Rightarrow a=b=c=\dfrac13$$

$$f(a,b,c)=\dfrac{a^3}{b^2+c^2}+\dfrac{b^3}{c^2+a^2}+\dfrac{c^3}{a^2+b^2}$$

$$\min(f(a,b,c))=3\sqrt[3]{\dfrac{\left(\dfrac13\right)^9}{8\left(\dfrac13\right)^6}}=\dfrac12$$[/sp]
 
Albert said:
\[27 \left ( \frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \right )\geq \frac{9}{2(a^2+b^2+c^2)}\leq \frac{27}{2}-----(*)\]
Thus, we have:
\[\frac{a^3}{b^2+c^2} + \frac{b^3}{a^2+c^2} + \frac{c^3}{a^2+b^2} \geq \frac{1}{2}\]
a question in (*)
if $x\geq y \geq z$ then $x\geq z$ there is no doubt
but if $x\geq y \leq z$ then $x\geq z$ is not always true

Hi, Albert!

You´re absolutely right: The implication: $x \ge\ y \le z \Rightarrow x\ge z $ is not always true!
Therefore, my solution is not "bullet proof". I´m sorry for having delivered a dubious answer :o
 
Last edited:
lfdahl said:
Hi, Albert!

You´re absolutely right: The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!
Therefore, my solution is not "bullet proof". I´m sorry for having delivered a dubious answer :o
The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!

it should be :
$x \ge\ y \le z \Rightarrow x\ge z $ is not always true!
 
  • #10
Albert said:
The implication: $x \ge\ y \ge z \Rightarrow x\ge z $ is not always true!

it should be :
$x \ge\ y \le z \Rightarrow x\ge z $ is not always true!

You´re right again :o
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 1 ·
Replies
1
Views
963
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K